• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    A least-squares/finite element method for the numerical solution of the Navier–Stokes-Cahn–Hilliard system modeling the motion of the contact line

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    He, Qiaolin
    Glowinski, Roland
    Wang, Xiao Ping
    KAUST Grant Number
    SA-C0040
    UK-C0016
    Date
    2011-06
    Permanent link to this record
    http://hdl.handle.net/10754/600238
    
    Metadata
    Show full item record
    Abstract
    In this article we discuss the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line separating two immiscible incompressible viscous fluids near a solid wall. The method we employ combines a finite element space approximation with a time discretization by operator-splitting. To solve the Cahn-Hilliard part of the problem, we use a least-squares/conjugate gradient method. We also show that the scheme has the total energy decaying in time property under certain conditions. Our numerical experiments indicate that the method discussed here is accurate, stable and efficient. © 2011 Elsevier Inc.
    Citation
    He Q, Glowinski R, Wang X-P (2011) A least-squares/finite element method for the numerical solution of the Navier–Stokes-Cahn–Hilliard system modeling the motion of the contact line. Journal of Computational Physics 230: 4991–5009. Available: http://dx.doi.org/10.1016/j.jcp.2011.03.022.
    Sponsors
    QL He and XP Wang are supported in part by Hong Kong RGC-CERG Grants 603107 and 604209. QL He is supported in part by Youth Foundation of Sichuan University No 2010SCU11072. XPW is also supported in part by Award No SA-C0040/UK-C0016, made by King Abdullah University of Science and Technology (KAUST). R. Glowinski acknowledges the support of the Institute for Advanced Study (IAS) at The Hong Kong University of Science and Technology.
    Publisher
    Elsevier BV
    Journal
    Journal of Computational Physics
    DOI
    10.1016/j.jcp.2011.03.022
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.jcp.2011.03.022
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.