• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Wavelet Decomposition Method for $L_2/$/TV-Image Deblurring

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Fornasier, M.
    Kim, Y.
    Langer, A.
    Schönlieb, C.-B.
    KAUST Grant Number
    KUK-I1-007-43
    Date
    2012-07-19
    Online Publication Date
    2012-07-19
    Print Publication Date
    2012-01
    Permanent link to this record
    http://hdl.handle.net/10754/600185
    
    Metadata
    Show full item record
    Abstract
    In this paper, we show additional properties of the limit of a sequence produced by the subspace correction algorithm proposed by Fornasier and Schönlieb [SIAM J. Numer. Anal., 47 (2009), pp. 3397-3428 for L 2/TV-minimization problems. An important but missing property of such a limiting sequence in that paper is the convergence to a minimizer of the original minimization problem, which was obtained in [M. Fornasier, A. Langer, and C.-B. Schönlieb, Numer. Math., 116 (2010), pp. 645-685 with an additional condition of overlapping subdomains. We can now determine when the limit is indeed a minimizer of the original problem. Inspired by the work of Vonesch and Unser [IEEE Trans. Image Process., 18 (2009), pp. 509-523], we adapt and specify this algorithm to the case of an orthogonal wavelet space decomposition for deblurring problems and provide an equivalence condition to the convergence of such a limiting sequence to a minimizer. We also provide a counterexample of a limiting sequence by the algorithm that does not converge to a minimizer, which shows the necessity of our analysis of the minimizing algorithm. © 2012 Society for Industrial and Applied Mathematics.
    Citation
    Fornasier M, Kim Y, Langer A, Schönlieb C-B (2012) Wavelet Decomposition Method for $L_2/$/TV-Image Deblurring. SIAM Journal on Imaging Sciences 5: 857–885. Available: http://dx.doi.org/10.1137/100819801.
    Sponsors
    The work of the first three authors was supported by the FWF project Y 432-N15 START-Preis Sparse Approximation and Optimization in High Dimensions. The last author's work was supported by the DFG Graduiertenkolleg 1023 Identification in Mathematical Models: Synergy of Stochastic and Numerical Methods, the Wissenschaftskolleg (Graduiertenkolleg, Ph.D. program) of the Faculty for Mathematics at the University of Vienna (funded by the Austrian Science Fund FWF), and the FFG project 813610 Erarbeitung neuer Algorithmen zum Image Inpainting. This publication is based on work supported by award KUK-I1-007-43, made by King Abdullah University of Science and Technology (KAUST). The results of this paper also contribute to the project WWTF Five senses-Call 2006, Mathematical Methods for Image Analysis and Processing in the Visual Arts.
    Publisher
    Society for Industrial & Applied Mathematics (SIAM)
    Journal
    SIAM Journal on Imaging Sciences
    DOI
    10.1137/100819801
    ae974a485f413a2113503eed53cd6c53
    10.1137/100819801
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.