Type
ArticleAuthors
Genton, Marc G.
Ruiz-Gazen, Anne
KAUST Grant Number
KUS-C1-016-04Date
2010-01Permanent link to this record
http://hdl.handle.net/10754/600174
Metadata
Show full item recordAbstract
We introduce the hair-plot to visualize influential observations in dependent data. It consists of all trajectories of the value of an estimator when each observation is modified in turn by an additive perturbation. We define two measures of influence: the local influence which describes the rate of departure from the original estimate due to a small perturbation of each observation; and the asymptotic influence which indicates the influence on the original estimate of the most extreme contamination for each observation. The cases of estimators defined as quadratic forms or ratios of quadratic forms are investigated in detail. Sample autocovariances, covariograms, and variograms belong to the first case. Sample autocorrelations, correlograms, and indices of spatial autocorrelation such as Moran's I belong to the second case.We illustrate our approach on various datasets from time series analysis and spatial statistics. This article has supplementary material online. © 2010 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.Citation
Genton MG, Ruiz-Gazen A (2010) Visualizing Influential Observations in Dependent Data. Journal of Computational and Graphical Statistics 19: 808–825. Available: http://dx.doi.org/10.1198/jcgs.2010.09101.Sponsors
Genton's research was supported in part by NSF grants CMG ATM-0620624 and DMS-1007504, and by award no. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST). The authors are grateful to Thibault Laurent for implementing the hair-plot function in R and thank the editor, an associate editor, and two anonymous referees for their valuable comments.Publisher
Informa UK Limitedae974a485f413a2113503eed53cd6c53
10.1198/jcgs.2010.09101