• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Visualization of big SPH simulations via compressed octree grids

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Reichl, Florian
    Treib, Marc
    Westermann, Rudiger
    KAUST Grant Number
    UK- C0020
    Date
    2013-10
    Permanent link to this record
    http://hdl.handle.net/10754/600173
    
    Metadata
    Show full item record
    Abstract
    Interactive and high-quality visualization of spatially continuous 3D fields represented by scattered distributions of billions of particles is challenging. One common approach is to resample the quantities carried by the particles to a regular grid and to render the grid via volume ray-casting. In large-scale applications such as astrophysics, however, the required grid resolution can easily exceed 10K samples per spatial dimension, letting resampling approaches appear unfeasible. In this paper we demonstrate that even in these extreme cases such approaches perform surprisingly well, both in terms of memory requirement and rendering performance. We resample the particle data to a multiresolution multiblock grid, where the resolution of the blocks is dictated by the particle distribution. From this structure we build an octree grid, and we then compress each block in the hierarchy at no visual loss using wavelet-based compression. Since decompression can be performed on the GPU, it can be integrated effectively into GPU-based out-of-core volume ray-casting. We compare our approach to the perspective grid approach which resamples at run-time into a view-aligned grid. We demonstrate considerably faster rendering times at high quality, at only a moderate memory increase compared to the raw particle set. © 2013 IEEE.
    Citation
    Reichl F, Treib M, Westermann R (2013) Visualization of big SPH simulations via compressed octree grids. 2013 IEEE International Conference on Big Data. Available: http://dx.doi.org/10.1109/BigData.2013.6691717.
    Sponsors
    We would like to thank Volker Springel from the MaxPlanck Society in Garching for his support with the data set.This publication is based on work supported by Award No.UK- C0020, made by King Abdullah University of Scienceand Technology (KAUST).
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    2013 IEEE International Conference on Big Data
    DOI
    10.1109/BigData.2013.6691717
    ae974a485f413a2113503eed53cd6c53
    10.1109/BigData.2013.6691717
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.