• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Gasda, S. E.
    Nordbotten, J. M.
    Celia, M. A.
    KAUST Grant Number
    KUS-F1-026-41
    Date
    2009-04-23
    Online Publication Date
    2009-04-23
    Print Publication Date
    2009-12
    Permanent link to this record
    http://hdl.handle.net/10754/600166
    
    Metadata
    Show full item record
    Abstract
    Large-scale implementation of geological CO2 sequestration requires quantification of risk and leakage potential. One potentially important leakage pathway for the injected CO2 involves existing oil and gas wells. Wells are particularly important in North America, where more than a century of drilling has created millions of oil and gas wells. Models of CO 2 injection and leakage will involve large uncertainties in parameters associated with wells, and therefore a probabilistic framework is required. These models must be able to capture both the large-scale CO 2 plume associated with the injection and the small-scale leakage problem associated with localized flow along wells. Within a typical simulation domain, many hundreds of wells may exist. One effective modeling strategy combines both numerical and analytical models with a specific set of simplifying assumptions to produce an efficient numerical-analytical hybrid model. The model solves a set of governing equations derived by vertical averaging with assumptions of a macroscopic sharp interface and vertical equilibrium. These equations are solved numerically on a relatively coarse grid, with an analytical model embedded to solve for wellbore flow occurring at the sub-gridblock scale. This vertical equilibrium with sub-scale analytical method (VESA) combines the flexibility of a numerical method, allowing for heterogeneous and geologically complex systems, with the efficiency and accuracy of an analytical method, thereby eliminating expensive grid refinement for sub-scale features. Through a series of benchmark problems, we show that VESA compares well with traditional numerical simulations and to a semi-analytical model which applies to appropriately simple systems. We believe that the VESA model provides the necessary accuracy and efficiency for applications of risk analysis in many CO2 sequestration problems. © 2009 Springer Science+Business Media B.V.
    Citation
    Gasda SE, Nordbotten JM, Celia MA (2009) Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration. Computational Geosciences 13: 469–481. Available: http://dx.doi.org/10.1007/s10596-009-9138-x.
    Sponsors
    This work was funded in part by a grantto from BP through funding of the Carbon Mitigation Initiativeat Princeton University, and the King Abdullah University ofScience and Technology through a research fellowship for S.Gasda (Award no. KUS-F1-026-41)
    Publisher
    Springer Nature
    Journal
    Computational Geosciences
    DOI
    10.1007/s10596-009-9138-x
    ae974a485f413a2113503eed53cd6c53
    10.1007/s10596-009-9138-x
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.