• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production in Microbial Fuel Cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Wang, Xin
    Cheng, Shaoan
    Feng, Yujie
    Merrill, Matthew D.
    Saito, Tomonori
    Logan, Bruce E.
    KAUST Grant Number
    KUS-11-003-13
    Date
    2009-09
    Permanent link to this record
    http://hdl.handle.net/10754/600143
    
    Metadata
    Show full item record
    Abstract
    Flat electrodes are useful in microbial fuel cells (MFCs) as close electrode spacing improves power generation. Carbon cloth and carbon paper materials typically used in hydrogen fuel cells, however, are prohibitively expensive for use in MFCs. An inexpensive carbon mesh material was examined here as a substantially less expensive alternative to these materials for the anode in an MFC. Pretreatment of the carbon mesh was needed to ensure adequate MFC performance. Heating the carbon mesh in a muffle furnace (450°C for 30 min) resulted in a maximum power density of 922 mW/m2 (46 W/m3) with this heat-treated anode, which was 3% more power than that produced using a mesh anode cleaned with acetone (893 mW/m2; 45 W/m3). This power density with heating was only 7% less than that achieved with carbon cloth treated by a high temperature ammonia gas process (988 mW/m2; 49 W/m3). When the carbon mesh was treated by the ammonia gas process, powerincreased to 1015 mW/m2 (51 W/m3). Analysis of the cleaned or heated surfaces showed these processes decreased atomic O/C ratio, indicating removal of contaminants that interfered with charge transfer. Ammonia gas treatment also increased the atomic N/C ratio, suggesting that this process produced nitrogen related functional groups that facilitated electron transfer. These results show that low cost heat-treated carbon mesh materials can be used as the anode in an MFC, providing good performance and even exceeding performance of carbon cloth anodes. © 2009 American Chemical Society.
    Citation
    Wang X, Cheng S, Feng Y, Merrill MD, Saito T, et al. (2009) Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production in Microbial Fuel Cells. Environ Sci Technol 43: 6870–6874. Available: http://dx.doi.org/10.1021/es900997w.
    Sponsors
    We thank Tad Daniel and Josh Stapleton from M RI for their help on XPS and other surface measurements. This research was Supported by Award KUS-11-003-13 from the King Abdullah University of Science and Technology (KAUST), the U.S. National Science Foundation (CBET-0730359), National Science Foundation of China (50638020), the National Creative Research Groups of China (50821002),and a scholarship from the China Scholarship Council (CSC).
    Publisher
    American Chemical Society (ACS)
    Journal
    Environmental Science & Technology
    DOI
    10.1021/es900997w
    ae974a485f413a2113503eed53cd6c53
    10.1021/es900997w
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.