Type
Conference PaperKAUST Grant Number
KUS-C1–016–04Date
2012-10Permanent link to this record
http://hdl.handle.net/10754/600140
Metadata
Show full item recordAbstract
This paper presents a new sampling method for motion planning that can generate configurations more uniformly distributed on C-obstacle surfaces than prior approaches. Here, roadmap nodes are generated from the intersections between C-obstacles and a set of uniformly distributed fixed-length segments in C-space. The results show that this new sampling method yields samples that are more uniformly distributed than previous obstacle-based methods such as OBPRM, Gaussian sampling, and Bridge test sampling. UOBPRM is shown to have nodes more uniformly distributed near C-obstacle surfaces and also requires the fewest nodes and edges to solve challenging motion planning problems with varying narrow passages. © 2012 IEEE.Citation
Yeh H-Y, Thomas S, Eppstein D, Amato NM (2012) UOBPRM: A uniformly distributed obstacle-based PRM. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Available: http://dx.doi.org/10.1109/iros.2012.6385875.Sponsors
The work of Yeh, Thomas and Amato supported in part by NSF Grants EIA-OI03742, ACR-0081510, ACR-0113971, CCR-0113974, ACI-0326350, CRI-0551685, CCF-0833199, CCF-0830753, by the DOE, Chevron, IBM, Intel, HP, and by King Abdullah University of Science and Technology (KAUST) Award KUS-C1–016–04. The work of Eppstein supported in part by NSF Grants 0830403 and 1217322, and by the Office of Naval Research under MURI grant N00014–08-1–1015.ae974a485f413a2113503eed53cd6c53
10.1109/iros.2012.6385875