Show simple item record

dc.contributor.authorJiao, Fangxiang
dc.contributor.authorPhillips, Jeff M.
dc.contributor.authorGur, Yaniv
dc.contributor.authorJohnson, Chris R.
dc.date.accessioned2016-02-28T06:43:13Z
dc.date.available2016-02-28T06:43:13Z
dc.date.issued2012-02
dc.identifier.citationJiao F, Phillips JM, Gur Y, Johnson CR (2012) Uncertainty visualization in HARDI based on ensembles of ODFs. 2012 IEEE Pacific Visualization Symposium. Available: http://dx.doi.org/10.1109/PacificVis.2012.6183591.
dc.identifier.pmid24466504
dc.identifier.doi10.1109/PacificVis.2012.6183591
dc.identifier.urihttp://hdl.handle.net/10754/600126
dc.description.abstractIn this paper, we propose a new and accurate technique for uncertainty analysis and uncertainty visualization based on fiber orientation distribution function (ODF) glyphs, associated with high angular resolution diffusion imaging (HARDI). Our visualization applies volume rendering techniques to an ensemble of 3D ODF glyphs, which we call SIP functions of diffusion shapes, to capture their variability due to underlying uncertainty. This rendering elucidates the complex heteroscedastic structural variation in these shapes. Furthermore, we quantify the extent of this variation by measuring the fraction of the volume of these shapes, which is consistent across all noise levels, the certain volume ratio. Our uncertainty analysis and visualization framework is then applied to synthetic data, as well as to HARDI human-brain data, to study the impact of various image acquisition parameters and background noise levels on the diffusion shapes. © 2012 IEEE.
dc.description.sponsorshipSupported by NIH/NCRR Center for Integrative Biomedical Computing, 2P41-RR12553-12, Award KUS-C1-016-04, by KAUST, and DOE SciDAC VACET andDOE NETL, by subaward to the Univ. Utah under NSF award 1019343 to CRA, andby NIH Autism Center of Excellence grant (NIMH and NICHD #HD055741).
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectDT-MRI
dc.subjectHARDI
dc.subjectRank-k tensor decomp
dc.subjectUncertainty
dc.titleUncertainty visualization in HARDI based on ensembles of ODFs
dc.typeConference Paper
dc.identifier.journal2012 IEEE Pacific Visualization Symposium
dc.identifier.pmcidPMC3898522
dc.contributor.institutionSCI Institute, , United States
dc.contributor.institutionUniversity of Utah, Salt Lake City, United States
kaust.grant.numberKUS-C1-016-04


This item appears in the following Collection(s)

Show simple item record