• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Travelling-wave similarity solutions for a steadily translating slender dry patch in a thin fluid film

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Yatim, Y. M.
    Duffy, B. R.
    Wilson, S. K.
    KAUST Grant Number
    KUK-C1-013-04
    Date
    2013-05-21
    Online Publication Date
    2013-05-21
    Print Publication Date
    2013-05
    Permanent link to this record
    http://hdl.handle.net/10754/600080
    
    Metadata
    Show full item record
    Abstract
    A novel family of three-dimensional travelling-wave similarity solutions describing a steadily translating slender dry patch in an infinitely wide thin fluid film on an inclined planar substrate when surface-tension effects are negligible is obtained, the flow being driven by gravity and/or a prescribed constant shear stress on the free surface of the film. For both driving mechanisms, the dry patch has a parabolic shape (which may be concave up or concave down the substrate), and the film thickness increases monotonically away from the contact lines to its uniform far-field value. The two most practically important cases of purely gravity-driven flow and of purely surface-shear-stress-driven flow are analysed separately. © 2013 AIP Publishing LLC.
    Citation
    Yatim YM, Duffy BR, Wilson SK (2013) Travelling-wave similarity solutions for a steadily translating slender dry patch in a thin fluid film. Phys Fluids 25: 052103. Available: http://dx.doi.org/10.1063/1.4803906.
    Sponsors
    The first author (Y.M.Y.) wishes to thank the Ministry of Higher Education, Malaysia and Universiti Sains Malaysia for financial support via an Academic Staff Training Fellowship. Part of this work was undertaken while the third author (S. K. W.) was a Visiting Fellow in the Department of Mechanical and Aerospace Engineering in the School of Engineering and Applied Science at Princeton University, USA, and part of it was undertaken while he was a Visiting Fellow in the Oxford Centre for Collaborative Applied Mathematics (OCCAM), University of Oxford, Mathematical Institute, 24-29 St. Giles', Oxford OX1 3LB. This paper was based on work supported in part by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).
    Publisher
    AIP Publishing
    Journal
    Physics of Fluids
    DOI
    10.1063/1.4803906
    ae974a485f413a2113503eed53cd6c53
    10.1063/1.4803906
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.