Show simple item record

dc.contributor.authorZhou, Liang
dc.contributor.authorSchott, Mathias
dc.contributor.authorHansen, Charles
dc.date.accessioned2016-02-28T06:35:12Z
dc.date.available2016-02-28T06:35:12Z
dc.date.issued2012-10
dc.identifier.citationZhou L, Schott M, Hansen C (2012) Transfer function combinations. Computers & Graphics 36: 596–606. Available: http://dx.doi.org/10.1016/j.cag.2012.02.007.
dc.identifier.issn0097-8493
dc.identifier.doi10.1016/j.cag.2012.02.007
dc.identifier.urihttp://hdl.handle.net/10754/600057
dc.description.abstractDirect volume rendering has been an active area of research for over two decades. Transfer function design remains a difficult task since current methods, such as traditional 1D and 2D transfer functions, are not always effective for all data sets. Various 1D or 2D transfer function spaces have been proposed to improve classification exploiting different aspects, such as using the gradient magnitude for boundary location and statistical, occlusion, or size metrics. In this paper, we present a novel transfer function method which can provide more specificity for data classification by combining different transfer function spaces. In this work, a 2D transfer function can be combined with 1D transfer functions which improve the classification. Specifically, we use the traditional 2D scalar/gradient magnitude, 2D statistical, and 2D occlusion spectrum transfer functions and combine these with occlusion and/or size-based transfer functions to provide better specificity. We demonstrate the usefulness of the new method by comparing to the following previous techniques: 2D gradient magnitude, 2D occlusion spectrum, 2D statistical transfer functions and 2D size based transfer functions. © 2012 Elsevier Ltd.
dc.description.sponsorshipWe would like to thank the reviewers for helpful comments which improved our manuscript. This publication is based on work supported by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST), DOE SciDAC:VACET, NSF OCI-0906379, NIH-1R01GM098151-01.
dc.publisherElsevier BV
dc.subjectClassification
dc.subjectTransfer function
dc.subjectUser interface
dc.subjectVolume rendering
dc.titleTransfer function combinations
dc.typeArticle
dc.identifier.journalComputers & Graphics
dc.contributor.institutionUniversity of Utah, Salt Lake City, United States
kaust.grant.numberKUS-C1-016-04


This item appears in the following Collection(s)

Show simple item record