• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Pelties, Christian
    de la Puente, Josep
    Ampuero, Jean-Paul
    Brietzke, Gilbert B.
    Käser, Martin
    Date
    2012-02-18
    Online Publication Date
    2012-02-18
    Print Publication Date
    2012-02
    Permanent link to this record
    http://hdl.handle.net/10754/600015
    
    Metadata
    Show full item record
    Abstract
    Accurate and efficient numerical methods to simulate dynamic earthquake rupture and wave propagation in complex media and complex fault geometries are needed to address fundamental questions in earthquake dynamics, to integrate seismic and geodetic data into emerging approaches for dynamic source inversion, and to generate realistic physics-based earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture and seismic wave propagation by a high-order discontinuous Galerkin (DG) method combined with an arbitrarily high-order derivatives (ADER) time integration method was introduced in two dimensions by de la Puente et al. (2009). The ADER-DG method enables high accuracy in space and time and discretization by unstructured meshes. Here we extend this method to three-dimensional dynamic rupture problems. The high geometrical flexibility provided by the usage of tetrahedral elements and the lack of spurious mesh reflections in the ADER-DG method allows the refinement of the mesh close to the fault to model the rupture dynamics adequately while concentrating computational resources only where needed. Moreover, ADER-DG does not generate spurious high-frequency perturbations on the fault and hence does not require artificial Kelvin-Voigt damping. We verify our three-dimensional implementation by comparing results of the SCEC TPV3 test problem with two well-established numerical methods, finite differences, and spectral boundary integral. Furthermore, a convergence study is presented to demonstrate the systematic consistency of the method. To illustrate the capabilities of the high-order accurate ADER-DG scheme on unstructured meshes, we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes curved faults, fault branches, and surface topography. Copyright 2012 by the American Geophysical Union.
    Citation
    Pelties C, de la Puente J, Ampuero J-P, Brietzke GB, Käser M (2012) Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes. Journal of Geophysical Research 117. Available: http://dx.doi.org/10.1029/2011jb008857.
    Sponsors
    The authors thank the DFG (Deutsche Forschungsgemeinschaft),as the work was supported through the EmmyNoether-Programm (KA 2281/2-1). J.-P. A. was partially funded by NSF(grant EAR-0944288) and by the Southern California Earthquake Center(funded by NSF Cooperative Agreement EAR-0106924 and USGS CooperativeAgreement 02HQAG0008). The DFM data used for comparison wereprovided by Luis A. Dalguer and the SBIEM solutions where producedwith the code of Eric M. Dunham (MDSBI: Multidimensional spectralboundary integral, version 3.9.10, 2008, available at http://pangea.stanford.edu/~edunham/codes/codes.html). Furthermore, we thank Luis A. Dalguerand Alan Schiemenz for very helpful and fruitful discussions. Cristóbal E.Castro gave valuable comments and advice on the solution of the Riemannproblem and the parallelization. We also thank M. Mai for providing computationalresources as many parallel tests, the convergence test, and theSCEC benchmark have been computed on the BlueGene/P Shaheen ofthe King Abdullah University of Science and Technology, Saudi Arabia.This paper is SCEC contribution 1526 and Caltech Seismological Lab contribution10067. The reviews and comments by J.-P. Vilotte, S. M. Day,and the Associate Editor are appreciated and helped us to improve themanuscript.
    Publisher
    American Geophysical Union (AGU)
    Journal
    Journal of Geophysical Research: Solid Earth
    DOI
    10.1029/2011jb008857
    ae974a485f413a2113503eed53cd6c53
    10.1029/2011jb008857
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.