• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Thermotropic Phase Transition of Benzodithiophene Copolymer Thin Films and Its Impact on Electrical and Photovoltaic Characteristics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Ko, Sangwon
    Kim, Do Hwan
    Ayzner, Alexander L.
    Mannsfeld, Stefan C. B.
    Verploegen, Eric
    Nardes, Alexander M.
    Kopidakis, Nikos
    Toney, Michael F.
    Bao, Zhenan
    KAUST Grant Number
    KUS-C1-015-21
    Date
    2015-02-11
    Online Publication Date
    2015-02-11
    Print Publication Date
    2015-02-24
    Permanent link to this record
    http://hdl.handle.net/10754/600006
    
    Metadata
    Show full item record
    Abstract
    © 2015 American Chemical Society. We observed a thermotropic phase transition in poly[3,4-dihexyl thiophene-2,2′:5,6′-benzo[1,2-b:4,5-b′]dithiophene] (PDHBDT) thin films accompanied by a transition from a random orientation to an ordered lamellar phase via a nearly hexagonal lattice upon annealing. We demonstrate the effect of temperature-dependent molecular packing on charge carrier mobility (μ) in organic field-effect transistors (OFETs) and photovoltaic characteristics, such as exciton diffusion length (LD) and power conversion efficiency (PCE), in organic solar cells (OSCs) using PDHBDT. The μ was continuously improved with increasing annealing temperature and PDHBDT films annealed at 270 °C resulted in a maximum μ up to 0.46 cm2/(V s) (μavg = 0.22 cm2/(V s)), which is attributed to the well-ordered lamellar structure with a closer - stacking distance of 3.5 Å as shown by grazing incidence-angle X-ray diffraction (GIXD). On the other hand, PDHBDT films with a random molecular orientation are more effective in photovoltaic devices than films with an ordered hexagonal or lamellar phase based on current-voltage characteristics of PDHBDT/C60 bilayer solar cells. This observation corresponds to an enhanced dark current density (JD) and a decreased LD upon annealing. This study provides insight into the dependence of charge transport and photovoltaic characteristics on molecular packing in polymer semiconductors, which is crucial for the management of charge and energy transport in a range of organic optoelectronic devices.
    Citation
    Ko S, Kim DH, Ayzner AL, Mannsfeld SCB, Verploegen E, et al. (2015) Thermotropic Phase Transition of Benzodithiophene Copolymer Thin Films and Its Impact on Electrical and Photovoltaic Characteristics. Chem Mater 27: 1223–1232. Available: http://dx.doi.org/10.1021/cm503773j.
    Sponsors
    This work was supported by the Center for Advanced Molecular Photovoltaics, Award KUS-C1-015-21, made by King Abdullah University of Science and Technology (KAUST). GIXS measurements were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. S.K. acknowledges financial support by Korea Railroad Research Institute through the project "Development of Improvement Technology of Railroad Environment (PK1504C)" D.H.K. acknowledges financial support by the Center for Advanced Soft-Electronics under the Global Frontier Project (CASE-2014M3A6A5060932) and the Basic Science Research Program (2014R1A1A1005933) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning. The photoluminescence measurements (A.M.N. and N.K.) were carried out under funding from the Energy Frontier Research Center "Molecularly Engineered Energy Materials (MEEMs)" funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-SC0001342:001.
    Publisher
    American Chemical Society (ACS)
    Journal
    Chemistry of Materials
    DOI
    10.1021/cm503773j
    ae974a485f413a2113503eed53cd6c53
    10.1021/cm503773j
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.