• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Ha, Don-Hyung
    Moreau, Liane M.
    Bealing, Clive R.
    Zhang, Haitao cc
    Hennig, Richard G.
    Robinson, Richard D.
    KAUST Grant Number
    KUS-C1-018-02
    Date
    2011
    Permanent link to this record
    http://hdl.handle.net/10754/599968
    
    Metadata
    Show full item record
    Abstract
    We report the structural evolution and the diffusion processes which occur during the phase transformation of nanoparticles (NPs), ε-Co to Co 2P to CoP, from a reaction with tri-n-octylphosphine (TOP). Extended X-ray absorption fine structure (EXAFS) investigations were used to elucidate the changes in the local structure of cobalt atoms which occur as the chemical transformation progresses. The lack of long-range order, spread in interatomic distances, and overall increase in mean-square disorder compared with bulk structure reveal the decrease in the NP's structural order compared with bulk structure, which contributes to their deviation from bulk-like behavior. Results from EXAFS show both the Co2P and CoP phases contain excess Co. Results from EXAFS, transmission electron microscopy, X-ray diffraction, and density functional theory calculations reveal that the inward diffusion of phosphorus is more favorable at the beginning of the transformation from ε-Co to Co2P by forming an amorphous Co-P shell, while retaining a crystalline cobalt core. When the major phase of the sample turns to Co 2P, the diffusion processes reverse and cobalt atom out-diffusion is favored, leaving a hollow void, characteristic of the nanoscale Kirkendall effect. For the transformation from Co2P to CoP theory predicts an outward diffusion of cobalt while the anion lattice remains intact. In real samples, however, the Co-rich nanoparticles continue Kirkendall hollowing. Knowledge about the transformation method and structural properties provides a means to tailor the synthesis and composition of the NPs to facilitate their use in applications. © 2011 The Royal Society of Chemistry.
    Citation
    Ha D-H, Moreau LM, Bealing CR, Zhang H, Hennig RG, et al. (2011) The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles. J Mater Chem 21: 11498. Available: http://dx.doi.org/10.1039/c1jm10337g.
    Sponsors
    We thank Ken Finkelstein for his assistance with obtaining data, experimental setup at CHESS and advice concerning data analysis. We also thank the Pollack and Abruna groups for their helpful suggestions for conducting XAS experiments and analysis. We thank Peter Ko for his helpful discussion on EXAFS data analysis. This work was supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). We also acknowledge support of Cornell Center for Materials Research (CCMR) with funding from the Materials Research Science and Engineering Center program of the National Science Foundation (cooperative agreement DMR 0520404), and the support of Energy Materials Center at Cornell (EMC<SUP>2</SUP>), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science under Award Number DE-SC0001086. L.M.M. is supported from the Engineering Learning Initiatives Undergraduate Research Grants Program at Cornell University, with sponsorship from the SRC Education Alliance URO by Intel Foundation.
    Publisher
    Royal Society of Chemistry (RSC)
    Journal
    Journal of Materials Chemistry
    DOI
    10.1039/c1jm10337g
    ae974a485f413a2113503eed53cd6c53
    10.1039/c1jm10337g
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.