Show simple item record

dc.contributor.authorZhai, Ping
dc.contributor.authorBower, Amy
dc.date.accessioned2016-02-28T06:33:09Z
dc.date.available2016-02-28T06:33:09Z
dc.date.issued2013-01-31
dc.identifier.citationZhai P, Bower A (2013) The response of the Red Sea to a strong wind jet near the Tokar Gap in summer. Journal of Geophysical Research: Oceans 118: 421–434. Available: http://dx.doi.org/10.1029/2012JC008444.
dc.identifier.issn2169-9275
dc.identifier.doi10.1029/2012JC008444
dc.identifier.urihttp://hdl.handle.net/10754/599953
dc.description.abstract[1] Remote sensing and in situ observations are used to investigate the ocean response to the Tokar Wind Jet in the Red Sea. The wind jet blows down the atmospheric pressure gradient through the Tokar Gap on the Sudanese coast, at about 19°N, during the summer monsoon season. It disturbs the prevailing along-sea (southeastward) winds with strong cross-sea (northeastward) winds that can last from days to weeks and reach amplitudes of 20-25 m/s. By comparing scatterometer winds with along-track and gridded sea level anomaly observations, it is observed that an intense dipolar eddy spins up in response to the wind jet. The eddy pair has a horizontal scale of 140 km. Maximum ocean surface velocities can reach 1 m/s and eddy currents extend more than 100 m into the water column. The eddy currents appear to cover the width of the sea, providing a pathway for rapid transport of marine organisms and other drifting material from one coast to the other. Interannual variability in the strength of the dipole is closely matched with variability in the strength of the wind jet. The dipole is observed to be quasi-stationary, although there is some evidence for slow eastward propagation in an idealized numerical model. Simulation of the dipole in an idealized high-resolution numerical model suggests that this is the result of self-advection. © 2012. American Geophysical Union. All Rights Reserved.
dc.description.sponsorshipWe would like to thank Sarantis Sofianos for providing us the observational CTD and SADCP data used in this study, J. Thomas Farrar for providing us the buoy data, and Jiayan Yang for providing us with the 1.5-layer model code. This work was supported by award USA 00002, KSA 00011 and KSA 00011/02 made by King Abdullah University of Science and Technology (KAUST).
dc.publisherAmerican Geophysical Union (AGU)
dc.titleThe response of the Red Sea to a strong wind jet near the Tokar Gap in summer
dc.typeArticle
dc.identifier.journalJournal of Geophysical Research: Oceans
dc.contributor.institutionMIT-WHOI Joint Program in Physical Oceanography; Woods Hole Oceanographic Institution; Woods Hole Massachusetts USA
dc.contributor.institutionDepartment of Physical Oceanography; Woods Hole Oceanographic Institution; Woods Hole Massachusetts USA
kaust.grant.numberUSA 00002
kaust.grant.numberKSA 00011
kaust.grant.numberKSA 00011/02
dc.date.published-online2013-01-31
dc.date.published-print2013-01


This item appears in the following Collection(s)

Show simple item record