The effects of surface treatments on rapid chloride permeability tests

Type
Article

Authors
Yoon, Seyoon
Oh, Sang-gyun
Ha, Juyoung
Monteiro, Paulo M.

KAUST Grant Number
KUS-l1-004021

Date
2012-08

Abstract
Surface treatments are commonly applied to improve the chloride resistance of concrete structures exposed to saline environments. Information on chloride ingress to surface-treated concrete is mostly provided by application of the rapid chloride permeability test (RCPT); this test is short in duration and provides rapid results. This study presents a numerical formulation, based on the extended Nernst-Plank/Poisson (NPP) equation, to model the effect of the surface treatment on a sample tested by RCPT. Predictions of the model are compared to experimental measurements. The simulations show that the results from RCPT, in terms of ionic profiles and measurement of the electric field, are dependent on the effectiveness of surface treatments. During RCPT, highly effective surface treatments cause both cations and anions to flocculate at the interface between the surface treatment and the concrete, creating a local electric field. Our numerical model includes these phenomena and presents a methodology to obtain more accurate diffusivities of the surface-treated- concrete from RCPT. © 2012 Elsevier B.V. All rights reserved.

Citation
Yoon S, Oh S, Ha J, Monteiro PM (2012) The effects of surface treatments on rapid chloride permeability tests. Materials Chemistry and Physics 135: 699–708. Available: http://dx.doi.org/10.1016/j.matchemphys.2012.05.047.

Acknowledgements
This publication was based on work supported in part by Award No. KUS-l1-004021, made by King Abdullah University of Science and Technology (KAUST). The authors would like to express their sincere gratitude to Hangyu Cho, for his experimental assistance.

Publisher
Elsevier BV

Journal
Materials Chemistry and Physics

DOI
10.1016/j.matchemphys.2012.05.047

Permanent link to this record