Show simple item record

dc.contributor.authorWebber, Matthew A
dc.contributor.authorBressloff, Paul C
dc.date.accessioned2016-02-28T06:32:10Z
dc.date.available2016-02-28T06:32:10Z
dc.date.issued2013-03-12
dc.identifier.citationWebber MA, Bressloff PC (2013) The effects of noise on binocular rivalry waves: a stochastic neural field model. Journal of Statistical Mechanics: Theory and Experiment 2013: P03001. Available: http://dx.doi.org/10.1088/1742-5468/2013/03/p03001.
dc.identifier.issn1742-5468
dc.identifier.doi10.1088/1742-5468/2013/03/p03001
dc.identifier.urihttp://hdl.handle.net/10754/599907
dc.description.abstractWe analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction-diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave. © 2013 IOP Publishing Ltd and SISSA Medialab srl.
dc.description.sponsorshipThis publication was based on work supported in part by the National Science Foundation (DMS-1120327), the King Abdullah University of Science and Technology Award No. KUK-C1-013-04, and the Systems Biology Doctoral Training Centre, University of Oxford.
dc.publisherIOP Publishing
dc.subjectneuronal networks (theory)
dc.titleThe effects of noise on binocular rivalry waves: a stochastic neural field model
dc.typeArticle
dc.identifier.journalJournal of Statistical Mechanics: Theory and Experiment
dc.contributor.institutionUniversity of Oxford, Oxford, United Kingdom
dc.contributor.institutionUniversity of Utah, Salt Lake City, United States
kaust.grant.numberKUK-C1-013-04


This item appears in the following Collection(s)

Show simple item record