Show simple item record

dc.contributor.authorWessells, Colin D.
dc.contributor.authorPeddada, Sandeep V.
dc.contributor.authorMcDowell, Matthew T.
dc.contributor.authorHuggins, Robert A.
dc.contributor.authorCui, Yi
dc.date.accessioned2016-02-28T06:32:04Z
dc.date.available2016-02-28T06:32:04Z
dc.date.issued2012
dc.identifier.citationWessells CD, Peddada SV, McDowell MT, Huggins RA, Cui Y (2012) The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes. J Electrochem Soc 159: A98. Available: http://dx.doi.org/10.1149/2.060202jes.
dc.identifier.issn0013-4651
dc.identifier.doi10.1149/2.060202jes
dc.identifier.urihttp://hdl.handle.net/10754/599902
dc.description.abstractRecent battery research has focused on the high power and energy density needed for portable electronics and vehicles, but the requirements for grid-scale energy storage are different, with emphasis on low cost, long cycle life, and safety. Open framework materials with the Prussian Blue crystal structure offer the high power capability, ultra-long cycle life, and scalable, low cost synthesis and operation that are necessary for storage systems to integrate transient energy sources, such as wind and solar, with the electrical grid. We have demonstrated that two open framework materials, copper hexacyanoferrate and nickel hexacyanoferrate, can reversibly intercalate lithium, sodium, potassium, and ammonium ions at high rates. These materials can achieve capacities of up to 60 mAhg. The porous, nanoparticulate morphology of these materials, synthesized by the use of simple and inexpensive methods, results in remarkable rate capabilities: e.g. copper hexacyanoferrate retains 84 of its maximum capacity during potassium cycling at a very high (41.7C) rate, while nickel hexacyanoferrate retains 66 of its maximum capacity while cycling either sodium or potassium at this same rate. These materials show excellent stability during the cycling of sodium and potassium, with minimal capacity loss after 500 cycles. © 2011 The Electrochemical Society.
dc.description.sponsorshipThe authors acknowledge partial support from the King Abdullah University of Science and Technology (KAUST) Investigator Award (No. KUS-l1-001-12). A portion of this work was supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract DE-AC02-76SF00515 through the SLAC National Accelerator Laboratory LDRD project.
dc.publisherThe Electrochemical Society
dc.titleThe Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes
dc.typeArticle
dc.identifier.journalJournal of The Electrochemical Society
dc.contributor.institutionStanford Linear Accelerator Center, Menlo Park, United States
kaust.grant.numberKUS-l1-001-12


This item appears in the following Collection(s)

Show simple item record