Show simple item record

dc.contributor.authorHuang, Jianhua Z.
dc.contributor.authorShen, Haipeng
dc.contributor.authorBuja, Andreas
dc.date.accessioned2016-02-28T06:31:26Z
dc.date.available2016-02-28T06:31:26Z
dc.date.issued2009-12
dc.identifier.citationHuang JZ, Shen H, Buja A (2009) The Analysis of Two-Way Functional Data Using Two-Way Regularized Singular Value Decompositions. Journal of the American Statistical Association 104: 1609–1620. Available: http://dx.doi.org/10.1198/jasa.2009.tm08024.
dc.identifier.issn0162-1459
dc.identifier.issn1537-274X
dc.identifier.doi10.1198/jasa.2009.tm08024
dc.identifier.urihttp://hdl.handle.net/10754/599874
dc.description.abstractTwo-way functional data consist of a data matrix whose row and column domains are both structured, for example, temporally or spatially, as when the data are time series collected at different locations in space. We extend one-way functional principal component analysis (PCA) to two-way functional data by introducing regularization of both left and right singular vectors in the singular value decomposition (SVD) of the data matrix. We focus on a penalization approach and solve the nontrivial problem of constructing proper two-way penalties from oneway regression penalties. We introduce conditional cross-validated smoothing parameter selection whereby left-singular vectors are cross- validated conditional on right-singular vectors, and vice versa. The concept can be realized as part of an alternating optimization algorithm. In addition to the penalization approach, we briefly consider two-way regularization with basis expansion. The proposed methods are illustrated with one simulated and two real data examples. Supplemental materials available online show that several "natural" approaches to penalized SVDs are flawed and explain why so. © 2009 American Statistical Association.
dc.description.sponsorshipJianhua Z. Huang’s work was partially supported by NSF grant DMS-0606580, NCI grant CA57030, and Award Number KUS-CI-016-04, made by King Abdullah University of Science and Technology (KAUST). Haipeng Shen’s work was partially supported by NSF grant DMS-0606577, CMMI-0800575, and UNC-CH R. J. Reynolds Fund Award for Junior Faculty Development.
dc.publisherInforma UK Limited
dc.subjectBasis expansion
dc.subjectFunctional data analysis
dc.subjectPenalization
dc.subjectRegularization
dc.subjectSpatial-temporal modeling
dc.titleThe Analysis of Two-Way Functional Data Using Two-Way Regularized Singular Value Decompositions
dc.typeArticle
dc.identifier.journalJournal of the American Statistical Association
dc.contributor.institutionTexas A and M University, College Station, United States
dc.contributor.institutionThe University of North Carolina at Chapel Hill, Chapel Hill, United States
dc.contributor.institutionUniversity of Pennsylvania, Wharton School, Philadelphia, United States
kaust.grant.numberKUS-CI-016-04


This item appears in the following Collection(s)

Show simple item record