Surfactant Ligand Removal and Rational Fabrication of Inorganically Connected Quantum Dots
Type
ArticleAuthors
Zhang, Haitao
Hu, Bo
Sun, Liangfeng
Hovden, Robert
Wise, Frank W.
Muller, David A.

Robinson, Richard D.
KAUST Grant Number
KUS-C1-018-02Date
2011-12-14Permanent link to this record
http://hdl.handle.net/10754/599820
Metadata
Show full item recordAbstract
A novel method is reported to create inorganically connected nanocrystal (NC) assemblies for both II-VI and IV-VI semiconductors by removing surfactant ligands using (NH 4) 2S. This surface modification process differs from ligand exchange methods in that no new surfactant ligands are introduced and the post-treated NC surfaces are nearly bare. The detailed mechanism study shows that the high reactivity between (NH 4) 2S and metal-surfactant ligand complexes enables the complete removal of surfactant ligands in seconds and converts the NC metal-rich shells into metal sulfides. The post-treated NCs are connected through metal-sulfide bonding and form a larger NCs film assembly, while still maintaining quantum confinement. Such "connected but confined" NC assemblies are promising new materials for electronic and optoelectronic devices. © 2011 American Chemical Society.Citation
Zhang H, Hu B, Sun L, Hovden R, Wise FW, et al. (2011) Surfactant Ligand Removal and Rational Fabrication of Inorganically Connected Quantum Dots. Nano Lett 11: 5356–5361. Available: http://dx.doi.org/10.1021/nl202892p.Sponsors
We acknowledge helpful discussions with Professor Tobias Hanrath. This publication is based on work supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST) and by the Semiconductor Research Corporation and the Center for Nanoscale Systems (NSF #EEC-0117770, 0646547). We also acknowledge support of Cornell Center for Materials Research (CCMR) with funding from the Materials Research Science and Engineering Center program of the National Science Foundation (cooperative agreement DMR 0520404), and support of Energy Materials Center at Cornell (EMC<SUP>2</SUP>), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science under Award Number DE-SC0001086.Publisher
American Chemical Society (ACS)Journal
Nano LettersPubMed ID
22011091ae974a485f413a2113503eed53cd6c53
10.1021/nl202892p
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Surface Engineering of Metal and Semiconductor Nanocrystal Assemblies and Their Optical and Electronic Devices.
- Authors: Choi YC, Lee J, Ng JJ, Kagan CR
- Issue date: 2023 Jul 4
- Library Design of Ligands at the Surface of Colloidal Nanocrystals.
- Authors: Giansante C
- Issue date: 2020 Aug 18
- Inorganically coated colloidal quantum dots in polar solvents using a microemulsion-assisted method.
- Authors: Acebrón M, Herrera FC, Mizrahi M, Navío C, Bernardo-Gavito R, Granados D, Requejo FG, Juarez BH
- Issue date: 2017 Jan 18
- Inorganically Connecting Colloidal Nanocrystals Significantly Improves Mechanical Properties.
- Authors: Wang Z, Srinivasan S, Dai R, Rana A, Nian Q, Solanki K, Wang RY
- Issue date: 2023 Jun 14
- A generic method for rational scalable synthesis of monodisperse metal sulfide nanocrystals.
- Authors: Zhang H, Hyun BR, Wise FW, Robinson RD
- Issue date: 2012 Nov 14