Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes

Abstract
Silicon nanowires (SiNWs) have the potential to perform as anodes for lithium-ion batteries with a much higher energy density than graphite. However, there has been little work in understanding the surface chemistry of the solid electrolyte interphase (SEI) formed on silicon due to the reduction of the electrolyte. Given that a good, passivating SEI layer plays such a crucial role in graphite anodes, we have characterized the surface composition and morphology of the SEI formed on the SiNWs using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). We have found that the SEI is composed of reduction products similar to that found on graphite electrodes, with Li2CO3 as an important component. Combined with electrochemical impedance spectroscopy, the results were used to determine the optimal cycling parameters for good cycling. The role of the native SiO2 as well as the effect of the surface area of the SiNWs on reactivity with the electrolyte were also addressed. © 2009 Elsevier B.V. All rights reserved.

Citation
Chan CK, Ruffo R, Hong SS, Cui Y (2009) Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources 189: 1132–1140. Available: http://dx.doi.org/10.1016/j.jpowsour.2009.01.007.

Acknowledgements
The work is supported by the Global Climate and Energy Project at Stanford, Office of Naval Research, and King Abdullah University of Science and Technology. C.K.C. acknowledges support from a National Science Foundation graduate fellowship and Stanford Graduate Fellowship.

Publisher
Elsevier BV

Journal
Journal of Power Sources

DOI
10.1016/j.jpowsour.2009.01.007

Permanent link to this record