Show simple item record

dc.contributor.authorRungta, Meha
dc.contributor.authorXu, Liren
dc.contributor.authorKoros, William J.
dc.date.accessioned2016-02-28T06:09:40Z
dc.date.available2016-02-28T06:09:40Z
dc.date.issued2015-04
dc.identifier.citationRungta M, Xu L, Koros WJ (2015) Structure–performance characterization for carbon molecular sieve membranes using molecular scale gas probes. Carbon 85: 429–442. Available: http://dx.doi.org/10.1016/j.carbon.2015.01.008.
dc.identifier.issn0008-6223
dc.identifier.doi10.1016/j.carbon.2015.01.008
dc.identifier.urihttp://hdl.handle.net/10754/599781
dc.description.abstract© 2015 Elsevier Ltd. All rights reserved. Understanding the relationship between carbon molecular sieve (CMS) pore structure and corresponding gas separation performance enables optimization for a given gas separation application. The final pyrolysis temperature and starting polymer precursor are the two critical parameters in controlling CMS performance. This study considers structure and performance changes of CMS derived from a commercially available polymer precursor at different pyrolysis temperatures. As reviewed in this paper, most traditional characterization methods based on microscopy, X-ray diffraction, spectroscopy, sorption-based pore size distribution measurements etc. provide limited information for relating separation performance to the CMS morphology and structural changes. A useful alternative approach based on different sized gases as molecular scale probes of the CMS pore structure was successfully used here in conjunction with separation data to provide critical insights into the structure-performance relationships of the engineered CMS.
dc.description.sponsorshipThe authors thank The Dow Chemical Company for funding this work. The authors especially thank Mark Brayden and Marcos Martinez for helpful discussions and comments. The authors also acknowledge additional funding support provided by King Abdullah University of Science and Technology (KAUST).
dc.publisherElsevier BV
dc.titleStructure–performance characterization for carbon molecular sieve membranes using molecular scale gas probes
dc.typeArticle
dc.identifier.journalCarbon
dc.contributor.institutionGeorgia Institute of Technology, Atlanta, United States


This item appears in the following Collection(s)

Show simple item record