Type
ArticleKAUST Grant Number
KUK-C1-013-04Date
2015-02-12Online Publication Date
2015-02-12Print Publication Date
2015-02Permanent link to this record
http://hdl.handle.net/10754/599775
Metadata
Show full item recordAbstract
© 2014 The Authors. Microcirculation published by John Wiley & Sons Ltd. Objective: Recent developments in high-resolution imaging techniques have enabled digital reconstruction of three-dimensional sections of microvascular networks down to the capillary scale. To better interpret these large data sets, our goal is to distinguish branching trees of arterioles and venules from capillaries. Methods: Two novel algorithms are presented for classifying vessels in microvascular anatomical data sets without requiring flow information. The algorithms are compared with a classification based on observed flow directions (considered the gold standard), and with an existing resistance-based method that relies only on structural data. Results: The first algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules. The second algorithm, developed for networks with multiple inlets and outlets, correctly identifies more arterioles and venules, but is more sensitive to parameter changes. Conclusions: The algorithms presented here can be used to classify microvessels in large microvascular data sets lacking flow information. This provides a basis for analyzing the distinct geometrical properties and modelling the functional behavior of arterioles, capillaries, and venules.Citation
Smith AF, Secomb TW, Pries AR, Smith NP, Shipley RJ (2015) Structure-Based Algorithms for Microvessel Classification. Microcirculation 22: 99–108. Available: http://dx.doi.org/10.1111/micc.12181.Sponsors
This study was supported by Award No. KUK-C1-013-04 made by King Abdullah University of Science and Technology (KAUST), NIH grant HL070657, and a travel grant from St Anne's College, Oxford.Publisher
WileyJournal
MicrocirculationPubMed ID
25403335PubMed Central ID
PMC4329063ae974a485f413a2113503eed53cd6c53
10.1111/micc.12181
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- A hybrid discrete-continuum approach for modelling microcirculatory blood flow.
- Authors: Shipley RJ, Smith AF, Sweeney PW, Pries AR, Secomb TW
- Issue date: 2020 Feb 28
- Microvascular hemodynamics in the chick chorioallantoic membrane.
- Authors: Smith AF, Nitzsche B, Maibier M, Pries AR, Secomb TW
- Issue date: 2016 Oct
- A statistical model of the penetrating arterioles and venules in the human cerebral cortex.
- Authors: El-Bouri WK, Payne SJ
- Issue date: 2016 Oct
- Branching patterns for arterioles and venules of the human cerebral cortex.
- Authors: Cassot F, Lauwers F, Lorthois S, Puwanarajah P, Cances-Lauwers V, Duvernoy H
- Issue date: 2010 Feb 8
- Spatiotemporal distribution of neurovascular alignment in remodeling adult rat mesentery microvascular networks.
- Authors: Stapor PC, Murfee WL
- Issue date: 2012