Stochastic Turing Patterns: Analysis of Compartment-Based Approaches
Type
ArticleAuthors
Cao, YangErban, Radek
KAUST Grant Number
KUK-C1-013-04Date
2014-11-25Online Publication Date
2014-11-25Print Publication Date
2014-12Permanent link to this record
http://hdl.handle.net/10754/599739
Metadata
Show full item recordAbstract
© 2014, Society for Mathematical Biology. Turing patterns can be observed in reaction-diffusion systems where chemical species have different diffusion constants. In recent years, several studies investigated the effects of noise on Turing patterns and showed that the parameter regimes, for which stochastic Turing patterns are observed, can be larger than the parameter regimes predicted by deterministic models, which are written in terms of partial differential equations (PDEs) for species concentrations. A common stochastic reaction-diffusion approach is written in terms of compartment-based (lattice-based) models, where the domain of interest is divided into artificial compartments and the number of molecules in each compartment is simulated. In this paper, the dependence of stochastic Turing patterns on the compartment size is investigated. It has previously been shown (for relatively simpler systems) that a modeler should not choose compartment sizes which are too small or too large, and that the optimal compartment size depends on the diffusion constant. Taking these results into account, we propose and study a compartment-based model of Turing patterns where each chemical species is described using a different set of compartments. It is shown that the parameter regions where spatial patterns form are different from the regions obtained by classical deterministic PDE-based models, but they are also different from the results obtained for the stochastic reaction-diffusion models which use a single set of compartments for all chemical species. In particular, it is argued that some previously reported results on the effect of noise on Turing patterns in biological systems need to be reinterpreted.Citation
Cao Y, Erban R (2014) Stochastic Turing Patterns: Analysis of Compartment-Based Approaches. Bull Math Biol 76: 3051–3069. Available: http://dx.doi.org/10.1007/s11538-014-0044-6.Sponsors
The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement No. 239870. This publication was based on work supported in part by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST). Radek Erban would also like to thank the Royal Society for a University Research Fellowship; Brasenose College, University of Oxford, for a Nicholas Kurti Junior Fellowship; and the Leverhulme Trust for a Philip Leverhulme Prize. Yang Cao's work was supported by the National Science Foundation under awards DMS-1225160 and CCF-0953590, and the National Institutes of Health under award GM078989.Publisher
Springer NatureJournal
Bulletin of Mathematical BiologyPubMed ID
25421150ae974a485f413a2113503eed53cd6c53
10.1007/s11538-014-0044-6
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Multiscale Stochastic Reaction-Diffusion Algorithms Combining Markov Chain Models with Stochastic Partial Differential Equations.
- Authors: Kang HW, Erban R
- Issue date: 2019 Aug
- Stochastic reaction and diffusion on growing domains: understanding the breakdown of robust pattern formation.
- Authors: Woolley TE, Baker RE, Gaffney EA, Maini PK
- Issue date: 2011 Oct
- Spatially distributed stochastic systems: Equation-free and equation-assisted preconditioned computations.
- Authors: Qiao L, Erban R, Kelley CT, Kevrekidis IG
- Issue date: 2006 Nov 28
- Stochastic Turing patterns in a synthetic bacterial population.
- Authors: Karig D, Martini KM, Lu T, DeLateur NA, Goldenfeld N, Weiss R
- Issue date: 2018 Jun 26
- The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion.
- Authors: Yates CA, Flegg MB
- Issue date: 2015 May 6