Show simple item record

dc.contributor.authorBonito, Andrea
dc.contributor.authorGuermond, Jean-Luc
dc.contributor.authorPopov, Bojan
dc.date.accessioned2016-02-28T06:07:58Z
dc.date.available2016-02-28T06:07:58Z
dc.date.issued2013-10-03
dc.identifier.citationBonito A, Guermond J-L, Popov B (2013) Stability analysis of explicit entropy viscosity methods for non-linear scalar conservation equations. Math Comp 83: 1039–1062. Available: http://dx.doi.org/10.1090/s0025-5718-2013-02771-8.
dc.identifier.issn0025-5718
dc.identifier.issn1088-6842
dc.identifier.doi10.1090/s0025-5718-2013-02771-8
dc.identifier.urihttp://hdl.handle.net/10754/599706
dc.description.abstractWe establish the L2-stability of an entropy viscosity technique applied to nonlinear scalar conservation equations. First-and second-order explicit time-stepping techniques using continuous finite elements in space are considered. The method is shown to be stable independently of the polynomial degree of the space approximation under the standard CFL condition. © 2013 American Mathematical Society.
dc.description.sponsorshipThis material is based upon work supported by the Department of Homeland Security under agreement 2008-DN-077-ARI018-02, National Science Foundation grants DMS-0811041, DMS-0914977, DMS-1015984, AF Office of Scientific Research grant FA99550-12-0358, and is partially supported by award KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST)
dc.publisherAmerican Mathematical Society (AMS)
dc.subjectEntropy
dc.subjectFinite elements
dc.subjectNonlinear conservation equations
dc.subjectRunge-Kutta
dc.subjectStability
dc.subjectStrong stability preserving time stepping
dc.subjectTime stepping
dc.subjectViscous approximation
dc.titleStability analysis of explicit entropy viscosity methods for non-linear scalar conservation equations
dc.typeArticle
dc.identifier.journalMathematics of Computation
dc.contributor.institutionTexas A and M University, College Station, United States
dc.contributor.institutionLIMSI Laobratoire d'Informatique pour la Mecanique et les Sciences de l'Ingenieur, Orsay, France
kaust.grant.numberKUS-C1-016-04


This item appears in the following Collection(s)

Show simple item record