Stability analysis of explicit entropy viscosity methods for non-linear scalar conservation equations
dc.contributor.author | Bonito, Andrea | |
dc.contributor.author | Guermond, Jean-Luc | |
dc.contributor.author | Popov, Bojan | |
dc.date.accessioned | 2016-02-28T06:07:58Z | |
dc.date.available | 2016-02-28T06:07:58Z | |
dc.date.issued | 2013-10-03 | |
dc.identifier.citation | Bonito A, Guermond J-L, Popov B (2013) Stability analysis of explicit entropy viscosity methods for non-linear scalar conservation equations. Math Comp 83: 1039–1062. Available: http://dx.doi.org/10.1090/s0025-5718-2013-02771-8. | |
dc.identifier.issn | 0025-5718 | |
dc.identifier.issn | 1088-6842 | |
dc.identifier.doi | 10.1090/s0025-5718-2013-02771-8 | |
dc.identifier.uri | http://hdl.handle.net/10754/599706 | |
dc.description.abstract | We establish the L2-stability of an entropy viscosity technique applied to nonlinear scalar conservation equations. First-and second-order explicit time-stepping techniques using continuous finite elements in space are considered. The method is shown to be stable independently of the polynomial degree of the space approximation under the standard CFL condition. © 2013 American Mathematical Society. | |
dc.description.sponsorship | This material is based upon work supported by the Department of Homeland Security under agreement 2008-DN-077-ARI018-02, National Science Foundation grants DMS-0811041, DMS-0914977, DMS-1015984, AF Office of Scientific Research grant FA99550-12-0358, and is partially supported by award KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST) | |
dc.publisher | American Mathematical Society (AMS) | |
dc.subject | Entropy | |
dc.subject | Finite elements | |
dc.subject | Nonlinear conservation equations | |
dc.subject | Runge-Kutta | |
dc.subject | Stability | |
dc.subject | Strong stability preserving time stepping | |
dc.subject | Time stepping | |
dc.subject | Viscous approximation | |
dc.title | Stability analysis of explicit entropy viscosity methods for non-linear scalar conservation equations | |
dc.type | Article | |
dc.identifier.journal | Mathematics of Computation | |
dc.contributor.institution | Texas A and M University, College Station, United States | |
dc.contributor.institution | LIMSI Laobratoire d'Informatique pour la Mecanique et les Sciences de l'Ingenieur, Orsay, France | |
kaust.grant.number | KUS-C1-016-04 |