Spiral multiple-effect diffusion solar still coupled with vacuum-tube collector and heat pipe
Type
ArticleKAUST Grant Number
KUK-C1-014-12Date
2015-04Permanent link to this record
http://hdl.handle.net/10754/599696
Metadata
Show full item recordAbstract
© 2015 Elsevier B.V. A novel solar still with spiral-shape multiple-effect diffusion unit is developed in the present study. The test results of a 14-effect unit coupled with vacuum-tube solar collector (absorber area 1.08m2) show that the highest daily pure water production is 40.6kgd-1. The measured highest productivity based on the area of glass cover, solar absorber, and evaporating surface is 34.7, 40.6, and 7.96kgm-2d-1, respectively, which are much higher than the published results. The measured solar distillation efficiency is 2.0-3.5. The performance enhancement results mainly from the lateral diffusion process in the spiraled still cell. The vapor flow generated by heat input can flow freely and laterally through the spiral channel down to the end when solar heat input is high. Besides, the larger evaporating and condensing area at the outer cell may increase heat and mass transfer at the outer cell.Citation
Huang B-J, Chong T-L, Wu P-H, Dai H-Y, Kao Y-C (2015) Spiral multiple-effect diffusion solar still coupled with vacuum-tube collector and heat pipe. Desalination 362: 74–83. Available: http://dx.doi.org/10.1016/j.desal.2015.02.011.Sponsors
This publication is based on work supported by Award No. KUK-C1-014-12, made by King Abdullah University of Science and Technology (KAUST), Saudi Arabia, and by Grant No. NSC101-2221-E-002-067-MY2, Ministry of Science and Technology, Taiwan.Publisher
Elsevier BVJournal
Desalinationae974a485f413a2113503eed53cd6c53
10.1016/j.desal.2015.02.011
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated items
Showing items related by title, author, creator and subject.
-
The effect of anneal, solar irradiation and humidity on the adhesion/cohesion properties of P3HT:PCBM based inverted polymer solar cellsDupont, Stephanie R.; Voroshazi, Eszter; Heremans, Paul; Dauskardt, Reinhold H. (2012 38th IEEE Photovoltaic Specialists Conference, Institute of Electrical and Electronics Engineers (IEEE), 2012-06) [Conference Paper]We use a thin-film adhesion technique that enables us to precisely measure the energy required to separate adjacent layers in OPV cells. We demonstrate the presence of weak interfaces in prototypical inverted polymer solar cells, either prepared by spin, spray or slot-die coating, including flexible and non flexible solar cells. In all cases, we observed adhesive failure at P3HT:PCBM/PEDOT:PSS interface, indicating the intrinsic material dependence of this mechanism. The impact of temperature, solar irradiation and humidity on the adhesion and cohesion properties of this particular interface is discussed. First, we have found that post-deposition annealing increases the adhesion significantly. Annealing changes the morphology in the photoactive layer and consequently alters the chemical properties at the interface. Second, solar irradiation on fully encapsulated solar cells has no damaging but in contrast an enhancing effect on the adhesion properties, due to the heat generated from IR radiation. Finally, the synergetic effect of stress and an environmental species like moisture greatly accelerates the decohesion rate in the weak hygroscopic PEDOT:PSS layer. This results in a loss of mechanical integrity and device performance. The insight into the mechanisms of delamination and decohesion yields general guidelines for the design of more reliable organic electronic devices. © 2012 IEEE.
-
Polymer Solar Cells: Polymer Solar Cells with Efficiency >10% Enabled via a Facile Solution-Processed Al-Doped ZnO Electron Transporting Layer (Adv. Energy Mater. 12/2015)Jagadamma, Lethy Krishnan; Al-Senani, Mohammed; El Labban, Abdulrahman; Gereige, Issam; Ngongang Ndjawa, Guy Olivier; Faria, Jorge C. D.; Kim, Taesoo; Zhao, Kui; Cruciani, Federico; Anjum, Dalaver H.; McLachlan, Martyn A.; Beaujuge, Pierre; Amassian, Aram (Advanced Energy Materials, Wiley-Blackwell, 2015-06) [Article]
-
Solar Cells: Re-evaluating the Role of Sterics and Electronic Coupling in Determining the Open-Circuit Voltage of Organic Solar Cells (Adv. Mater. 42/2013)Graham, Kenneth; Erwin, Patrick; Nordlund, Dennis; Vandewal, Koen; Li, Ruipeng; Ngongang Ndjawa, Guy Olivier; Hoke, Eric T.; Salleo, Alberto; Thompson, Mark E.; McGehee, Michael D.; Amassian, Aram (Advanced Materials, Wiley-Blackwell, 2013-11) [Article]