Show simple item record

dc.contributor.authorChen, Lisha
dc.contributor.authorHuang, Jianhua Z.
dc.date.accessioned2016-02-28T06:07:24Z
dc.date.available2016-02-28T06:07:24Z
dc.date.issued2012-10-08
dc.identifier.citationChen L, Huang JZ (2012) Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection. Journal of the American Statistical Association 107: 1533–1545. Available: http://dx.doi.org/10.1080/01621459.2012.734178.
dc.identifier.issn0162-1459
dc.identifier.issn1537-274X
dc.identifier.doi10.1080/01621459.2012.734178
dc.identifier.urihttp://hdl.handle.net/10754/599681
dc.description.abstractThe reduced-rank regression is an effective method in predicting multiple response variables from the same set of predictor variables. It reduces the number of model parameters and takes advantage of interrelations between the response variables and hence improves predictive accuracy. We propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty. We apply a group-lasso type penalty that treats each row of the matrix of the regression coefficients as a group and show that this penalty satisfies certain desirable invariance properties. We develop two numerical algorithms to solve the penalized regression problem and establish the asymptotic consistency of the proposed method. In particular, the manifold structure of the reduced-rank regression coefficient matrix is considered and studied in our theoretical analysis. In our simulation study and real data analysis, the new method is compared with several existing variable selection methods for multivariate regression and exhibits competitive performance in prediction and variable selection. © 2012 American Statistical Association.
dc.description.sponsorshipLisha Chen is Assistant Professor, Department of Statistics, Yale University, New Haven, CT 06511 (E-mail: lisha.chen@yale.edu). Jianhua Z. Huang is Professor, Department of Statistics, Texas A&M University, College Station, TX 77843-3143 (E-mail: jianhua@stat.tamu.edu). Huang's work was partially supported by grants from the National Science Foundation (NSF; DMS-0907170, DMS-1007618, DMS-1208952) and Award Number KUS-CI-016-04, made by King Abdullah University of Science and Technology (KAUST). The authors thank Joseph Chang, Dean Foster, Zhihua Qiao, Lyle Ungar, and Lan Zhou for helpful discussions. They also thank two anonymous reviewers, an associate editor and the co-editor Jun Liu for constructive comments.
dc.publisherInforma UK Limited
dc.subjectGroup lasso penalty
dc.subjectLow rank matrix approximation
dc.subjectMultivariate regression
dc.subjectPenalized least squares
dc.subjectSparsity
dc.subjectStiefel manifold
dc.titleSparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection
dc.typeArticle
dc.identifier.journalJournal of the American Statistical Association
dc.contributor.institutionYale University, New Haven, United States
dc.contributor.institutionTexas A and M University, College Station, United States
kaust.grant.numberKUS-CI-016-04
dc.date.published-online2012-10-08
dc.date.published-print2012-12


This item appears in the following Collection(s)

Show simple item record