Show simple item record

dc.contributor.authorChatzipantelidis, P.
dc.contributor.authorLazarov, R. D.
dc.contributor.authorThomée, V.
dc.date.accessioned2016-02-28T06:07:15Z
dc.date.available2016-02-28T06:07:15Z
dc.date.issued2012-01-01
dc.identifier.citationChatzipantelidis P, Lazarov RD, Thomée V (2012) Some error estimates for the lumped mass finite element method for a parabolic problem. Math Comp 81: 1–20. Available: http://dx.doi.org/10.1090/s0025-5718-2011-02503-2.
dc.identifier.issn0025-5718
dc.identifier.issn1088-6842
dc.identifier.doi10.1090/s0025-5718-2011-02503-2
dc.identifier.urihttp://hdl.handle.net/10754/599674
dc.description.abstractWe study the spatially semidiscrete lumped mass method for the model homogeneous heat equation with homogeneous Dirichlet boundary conditions. Improving earlier results we show that known optimal order smooth initial data error estimates for the standard Galerkin method carry over to the lumped mass method whereas nonsmooth initial data estimates require special assumptions on the triangulation. We also discuss the application to time discretization by the backward Euler and Crank-Nicolson methods. © 2011 American Mathematical Society.
dc.description.sponsorshipThe research of R.D. Lazarov was supported in parts by US NSF Grants DMS-0713829, DMS-1016525, the Pichoridis Distinguished Lectureship through the Universityof Crete in 2008, and by award KUS-C1-016-04, made by King AbdullahUniversity of Science and Technology (KAUST).
dc.publisherAmerican Mathematical Society (AMS)
dc.subjectError estimates
dc.subjectLumped mass method
dc.subjectNonsmooth initial data
dc.subjectParabolic partial differential equations
dc.titleSome error estimates for the lumped mass finite element method for a parabolic problem
dc.typeArticle
dc.identifier.journalMathematics of Computation
dc.contributor.institutionPanepistimio Kritis, Rethymnon, Greece
dc.contributor.institutionTexas A and M University, College Station, United States
dc.contributor.institutionInstitute of Mathematics and Informatics Bulgarian Academy of Sciences, Sofia, Bulgaria
dc.contributor.institutionChalmers University of Technology, Göteborg, Sweden
dc.contributor.institutionFoundation for Research and Technology-Hellas, Heraklion, Greece
kaust.grant.numberKUS-C1-016-04


This item appears in the following Collection(s)

Show simple item record