Solving Quasi-Variational Inequalities for Image Restoration with Adaptive Constraint Sets
Type
ArticleKAUST Grant Number
KUK-I1-007-43Date
2014-01Permanent link to this record
http://hdl.handle.net/10754/599672
Metadata
Show full item recordAbstract
© 2014 Society for Industrial and Applied Mathematics. We consider a class of quasi-variational inequalities (QVIs) for adaptive image restoration, where the adaptivity is described via solution-dependent constraint sets. In previous work we studied both theoretical and numerical issues. While we were able to show the existence of solutions for a relatively broad class of problems, we encountered difficulties concerning uniqueness of the solution as well as convergence of existing algorithms for solving QVIs. In particular, it seemed that with increasing image size the growing condition number of the involved differential operator posed severe problems. In the present paper we prove uniqueness for a larger class of problems, particularly independent of the image size. Moreover, we provide a numerical algorithm with proved convergence. Experimental results support our theoretical findings.Citation
Lenzen F, Lellmann J, Becker F, Schnörr C (2014) Solving Quasi-Variational Inequalities for Image Restoration with Adaptive Constraint Sets. SIAM Journal on Imaging Sciences 7: 2139–2174. Available: http://dx.doi.org/10.1137/130938347.Sponsors
DAMTP/CIA, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WA, UK (j.lellmann@damtp.cam.ac.uk). The work of this author was supported by Award KUK-I1-007-43, made by King Abdullah University of Science and Technology (KAUST), by EPSRC first grant EP/J009539/1, and by Royal Society International Exchange Award IE110314.Journal
SIAM Journal on Imaging Sciencesae974a485f413a2113503eed53cd6c53
10.1137/130938347