Solving eigenvalue problems on curved surfaces using the Closest Point Method
dc.contributor.author | Macdonald, Colin B. | |
dc.contributor.author | Brandman, Jeremy | |
dc.contributor.author | Ruuth, Steven J. | |
dc.date.accessioned | 2016-02-28T06:07:11Z | |
dc.date.available | 2016-02-28T06:07:11Z | |
dc.date.issued | 2011-06 | |
dc.identifier.citation | Macdonald CB, Brandman J, Ruuth SJ (2011) Solving eigenvalue problems on curved surfaces using the Closest Point Method. Journal of Computational Physics. Available: http://dx.doi.org/10.1016/j.jcp.2011.06.021. | |
dc.identifier.issn | 0021-9991 | |
dc.identifier.doi | 10.1016/j.jcp.2011.06.021 | |
dc.identifier.uri | http://hdl.handle.net/10754/599671 | |
dc.description.abstract | Eigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace-Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation schemes can be easily applied. We show that there is a one-to-one correspondence between a problem defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples demonstrate the effectiveness and generality of our approach. © 2011 Elsevier Inc. | |
dc.description.sponsorship | The work of this author was supported by an NSERC postdoctoral fellowship, NSF grant No. CCF-0321917, and by Award No. KUK-C1-013-04 made by King Abdullah University of Science and Technology (KAUST).The work of this author was supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.The work of this author was partially supported by a Grant from NSERC Canada. | |
dc.publisher | Elsevier BV | |
dc.subject | Closest Point Method | |
dc.subject | Eigenfunctions | |
dc.subject | Eigenvalues | |
dc.subject | Implicit surfaces | |
dc.subject | Laplace-Beltrami operator | |
dc.subject | Surface computation | |
dc.title | Solving eigenvalue problems on curved surfaces using the Closest Point Method | |
dc.type | Article | |
dc.identifier.journal | Journal of Computational Physics | |
dc.contributor.institution | University of Oxford, Oxford, United Kingdom | |
dc.contributor.institution | Courant Institute of Mathematical Sciences, New York, United States | |
dc.contributor.institution | Simon Fraser University, Burnaby, Canada | |
kaust.grant.number | KUK-C1-013-04 |