Show simple item record

dc.contributor.authorMacdonald, Colin B.
dc.contributor.authorBrandman, Jeremy
dc.contributor.authorRuuth, Steven J.
dc.date.accessioned2016-02-28T06:07:11Z
dc.date.available2016-02-28T06:07:11Z
dc.date.issued2011-06
dc.identifier.citationMacdonald CB, Brandman J, Ruuth SJ (2011) Solving eigenvalue problems on curved surfaces using the Closest Point Method. Journal of Computational Physics. Available: http://dx.doi.org/10.1016/j.jcp.2011.06.021.
dc.identifier.issn0021-9991
dc.identifier.doi10.1016/j.jcp.2011.06.021
dc.identifier.urihttp://hdl.handle.net/10754/599671
dc.description.abstractEigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace-Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation schemes can be easily applied. We show that there is a one-to-one correspondence between a problem defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples demonstrate the effectiveness and generality of our approach. © 2011 Elsevier Inc.
dc.description.sponsorshipThe work of this author was supported by an NSERC postdoctoral fellowship, NSF grant No. CCF-0321917, and by Award No. KUK-C1-013-04 made by King Abdullah University of Science and Technology (KAUST).The work of this author was supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.The work of this author was partially supported by a Grant from NSERC Canada.
dc.publisherElsevier BV
dc.subjectClosest Point Method
dc.subjectEigenfunctions
dc.subjectEigenvalues
dc.subjectImplicit surfaces
dc.subjectLaplace-Beltrami operator
dc.subjectSurface computation
dc.titleSolving eigenvalue problems on curved surfaces using the Closest Point Method
dc.typeArticle
dc.identifier.journalJournal of Computational Physics
dc.contributor.institutionUniversity of Oxford, Oxford, United Kingdom
dc.contributor.institutionCourant Institute of Mathematical Sciences, New York, United States
dc.contributor.institutionSimon Fraser University, Burnaby, Canada
kaust.grant.numberKUK-C1-013-04


This item appears in the following Collection(s)

Show simple item record