• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Solution-Processed Organic Solar Cells with Power Conversion Efficiencies of 2.5% using Benzothiadiazole/Imide-Based Acceptors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Bloking, Jason T.
    Han, Xu
    Higgs, Andrew T.
    Kastrop, John P.
    Pandey, Laxman
    Norton, Joseph E.
    Risko, Chad
    Chen, Cynthia E.
    Brédas, Jean-Luc
    McGehee, Michael D.
    Sellinger, Alan cc
    KAUST Grant Number
    KUS-C1-015-21
    Date
    2011-12-27
    Permanent link to this record
    http://hdl.handle.net/10754/599668
    
    Metadata
    Show full item record
    Abstract
    A new series of electron-deficient molecules based on a central benzothiadiazole moiety flanked with vinylimides has been synthesized via Heck chemistry and used in solution-processed organic photovoltaics (OPV). Two new compounds, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (PI-BT) and 4,7-bis(4-(N-hexyl-naphthalimide)vinyl)benzo[c]1,2,5-thiadiazole (NI-BT), show significantly different behaviors in bulk heterojunction (BHJ) solar cells using poly(3-hexylthiophene) (P3HT) as the electron donor. Two-dimensional grazing incidence X-ray scattering (2D GIXS) experiments demonstrate that PI-BT shows significant crystallization in spin-coated thin films, whereas NI-BT does not. Density functional theory (DFT) calculations predict that while PI-BT maintains a planar structure in the ground state, steric interactions cause a twist in the NI-BT molecule, likely preventing significant crystallization. In BHJ solar cells with P3HT as donor, PI-BT devices achieved a large open-circuit voltage of 0.96 V and a maximum device power-conversion efficiency of 2.54%, whereas NI-BT containing devices only achieved 0.1% power-conversion efficiency. © 2011 American Chemical Society.
    Citation
    Bloking JT, Han X, Higgs AT, Kastrop JP, Pandey L, et al. (2011) Solution-Processed Organic Solar Cells with Power Conversion Efficiencies of 2.5% using Benzothiadiazole/Imide-Based Acceptors. Chem Mater 23: 5484–5490. Available: http://dx.doi.org/10.1021/cm203111k.
    Sponsors
    This project was funded by the Center for Advanced Molecular Photovoltaics (CAMP), Award No. KUS-C1-015-21, made by King Abdullah University of Science and Technology (KAUST), and by the Global Climate and Energy Project (GCEP), Award No. 1138721. We also thank Dr. Peng Wei for the TGA measurement.
    Publisher
    American Chemical Society (ACS)
    Journal
    Chemistry of Materials
    DOI
    10.1021/cm203111k
    ae974a485f413a2113503eed53cd6c53
    10.1021/cm203111k
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.