Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains
Type
ArticleAuthors
Diao, YingTee, Benjamin C-K.
Giri, Gaurav
Xu, Jie
Kim, Do Hwan
Becerril, Hector A.
Stoltenberg, Randall M.
Lee, Tae Hoon
Xue, Gi
Mannsfeld, Stefan C. B.
Bao, Zhenan
KAUST Grant Number
KUS-C1-015-21Date
2013-06-02Online Publication Date
2013-06-02Print Publication Date
2013-07Permanent link to this record
http://hdl.handle.net/10754/599659
Metadata
Show full item recordAbstract
Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach - termed fluid-enhanced crystal engineering (FLUENCE) - that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm2 V-1 s -1 and 11 cm2 V-1 s-1. FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics. © 2013 Macmillan Publishers Limited. All rights reserved.Citation
Diao Y, Tee BC-K, Giri G, Xu J, Kim DH, et al. (2013) Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat Mater 12: 665–671. Available: http://dx.doi.org/10.1038/nmat3650.Sponsors
This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC02-76SF00515 (Y.D.). We are grateful to M. Toney at Stanford Synchrotron Radiation Lighsource (SSRL) for valuable input. We give thanks to J. E. Anthony and M. M. Nelson of 3M for providing high-purity TIPS-pentacene. We appreciate helpful discussions with O. Goto from the Chemical Engineering department at Stanford. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the US DOE, Office of Basic Energy Sciences. B.C-K.T. acknowledges support from a National Science Scholarship from the Agency for Science, Technology and Research (A*STAR), Singapore. G.G., H.A.B. and Z.B. acknowledge support from the National Science Foundation DMR-Solid State Chemistry (DMR-0705687-002). J.X. and G.X. acknowledge the National Science Foundation of China (NSFC 51133002) for financial support. D.H.K. and Z.B. acknowledge the support by the Center for Advanced Molecular Photovoltaics, award no. KUS-C1-015-21, made by King Abdullah University of Science and Technology. R.M.S. acknowledges financial support from the National Science Foundation Graduate Research Fellowship Program. T.H.L. acknowledges support from Toshiba through the Stanford CIS-FMA programme and the ILJU foundation in South Korea.Publisher
Springer NatureJournal
Nature MaterialsDOI
10.1038/nmat3650PubMed ID
23727951ae974a485f413a2113503eed53cd6c53
10.1038/nmat3650
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Solution-Processed Centimeter-Scale Highly Aligned Organic Crystalline Arrays for High-Performance Organic Field-Effect Transistors.
- Authors: Duan S, Wang T, Geng B, Gao X, Li C, Zhang J, Xi Y, Zhang X, Ren X, Hu W
- Issue date: 2020 Mar
- Scalable Ultrahigh-Speed Fabrication of Uniform Polycrystalline Thin Films for Organic Transistors.
- Authors: Wu H, Iino H, Hanna JI
- Issue date: 2020 Jul 1
- Highly Crystalline C8-BTBT Thin-Film Transistors by Lateral Homo-Epitaxial Growth on Printed Templates.
- Authors: Janneck R, Pilet N, Bommanaboyena SP, Watts B, Heremans P, Genoe J, Rolin C
- Issue date: 2017 Nov
- Gas Blow Coating: A Deposition Technique To Control the Crystal Morphology in Thin Films of Organic Semiconductors.
- Authors: Tong J, Doumbia A, Alieva A, Turner ML, Casiraghi C
- Issue date: 2019 Jul 31
- Flow-Directed Crystallization for Printed Electronics.
- Authors: Qu G, Kwok JJ, Diao Y
- Issue date: 2016 Dec 20