• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Solar Cells Based on Inks of n-Type Colloidal Quantum Dots

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Ning, Zhijun
    Dong, Haopeng
    Zhang, Qiong
    Voznyy, Oleksandr cc
    Sargent, Edward H. cc
    KAUST Grant Number
    KUS-11-009-21
    Date
    2014-09-22
    Online Publication Date
    2014-09-22
    Print Publication Date
    2014-10-28
    Permanent link to this record
    http://hdl.handle.net/10754/599653
    
    Metadata
    Show full item record
    Abstract
    © 2014 American Chemical Society. New inorganic ligands including halide anions have significantly accelerated progress in colloidal quantum dot (CQD) photovoltaics in recent years. All such device reports to date have relied on halide treatment during solid-state ligand exchanges or on co-treatment of long-aliphatic-ligand-capped nanoparticles in the solution phase. Here we report solar cells based on a colloidal quantum dot ink that is capped using halide-based ligands alone. By judicious choice of solvents and ligands, we developed a CQD ink from which a homogeneous and thick colloidal quantum dot solid is applied in a single step. The resultant films display an n-type character, making it suitable as a key component in a solar-converting device. We demonstrate two types of quantum junction devices that exploit these iodide-ligand-based inks. We achieve solar power conversion efficiencies of 6% using this class of colloids.
    Citation
    Ning Z, Dong H, Zhang Q, Voznyy O, Sargent EH (2014) Solar Cells Based on Inks of n-Type Colloidal Quantum Dots. ACS Nano 8: 10321–10327. Available: http://dx.doi.org/10.1021/nn503569p.
    Sponsors
    This publication is based in part on work supported by Award KUS-11-009-21, from King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund - Research Excellence Program, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. H.D. would like to acknowledge a scholarship from the China Scholarship Council (CSC). Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund - Research Excellence; and the University of Toronto. We thank Angstrom Engineering, Inc. and Innovative Technology, Inc. for useful discussions regarding material deposition methods and control of the glovebox environment, respectively. The authors thank L. Levine for CQD synthesis, L. Rollny for the zeta potential measurements, F. Fan for TEM measurements, J. McDowell for the XRD measurements, H. F. Movahed for SCAPS simulations, and E. Palmiano, R. Wolowiec, and D. Kopilovic for their help during the course of these studies.
    Publisher
    American Chemical Society (ACS)
    Journal
    ACS Nano
    DOI
    10.1021/nn503569p
    PubMed ID
    25225786
    ae974a485f413a2113503eed53cd6c53
    10.1021/nn503569p
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

    Related articles

    • Depleted-heterojunction colloidal quantum dot solar cells.
    • Authors: Pattantyus-Abraham AG, Kramer IJ, Barkhouse AR, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin MK, Grätzel M, Sargent EH
    • Issue date: 2010 Jun 22
    • Hybrid passivated colloidal quantum dot solids.
    • Authors: Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A, Kemp KW, Kramer IJ, Ning Z, Labelle AJ, Chou KW, Amassian A, Sargent EH
    • Issue date: 2012 Sep
    • Colloidal-quantum-dot photovoltaics using atomic-ligand passivation.
    • Authors: Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou KW, Fischer A, Amassian A, Asbury JB, Sargent EH
    • Issue date: 2011 Oct
    • Halide Re-Shelled Quantum Dot Inks for Infrared Photovoltaics.
    • Authors: Fan JZ, Liu M, Voznyy O, Sun B, Levina L, Quintero-Bermudez R, Liu M, Ouellette O, García de Arquer FP, Hoogland S, Sargent EH
    • Issue date: 2017 Nov 1
    • Orthogonal colloidal quantum dot inks enable efficient multilayer optoelectronic devices.
    • Authors: Lee S, Choi MJ, Sharma G, Biondi M, Chen B, Baek SW, Najarian AM, Vafaie M, Wicks J, Sagar LK, Hoogland S, de Arquer FPG, Voznyy O, Sargent EH
    • Issue date: 2020 Sep 23
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.