• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    System dynamic model and charging control of lead-acid battery for stand-alone solar PV system

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Huang, B.J.
    Hsu, P.C.
    Wu, M.S.
    Ho, P.Y.
    KAUST Grant Number
    KUK-C1-014-12
    Date
    2010-05
    Permanent link to this record
    http://hdl.handle.net/10754/599612
    
    Metadata
    Show full item record
    Abstract
    The lead-acid battery which is widely used in stand-alone solar system is easily damaged by a poor charging control which causes overcharging. The battery charging control is thus usually designed to stop charging after the overcharge point. This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first-order system dynamics model of lead-acid battery at different operating points near the overcharge voltage was derived experimentally, from which a charging control system based on PI algorithm was developed using PWM charging technique. The feedback control system for battery charging after the overcharge point (14 V) was designed to compromise between the set-point response and the disturbance rejection. The experimental results show that the control system can suppress the battery voltage overshoot within 0.1 V when the solar irradiation is suddenly changed from 337 to 843 W/m2. A long-term outdoor test for a solar LED lighting system shows that the battery voltage never exceeded 14.1 V for the set point 14 V and the control system can prevent the battery from overcharging. The test result also indicates that the control system is able to increase the charged energy by 78%, as compared to the case that the charging stops after the overcharge point (14 V). © 2010 Elsevier Ltd. All rights reserved.
    Citation
    Huang BJ, Hsu PC, Wu MS, Ho PY (2010) System dynamic model and charging control of lead-acid battery for stand-alone solar PV system. Solar Energy 84: 822–830. Available: http://dx.doi.org/10.1016/j.solener.2010.02.007.
    Sponsors
    This publication is based on work supported in part by Award No. KUK-C1-014-12, granted by King Abdullah University of Science and Technology (KAUST) and Project No. 97-D0137-1, provided by the Energy Bureau, Ministry of Economic Affairs, Taiwan.
    Publisher
    Elsevier BV
    Journal
    Solar Energy
    DOI
    10.1016/j.solener.2010.02.007
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.solener.2010.02.007
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.