Show simple item record

dc.contributor.authorFetsch, Corinna
dc.contributor.authorFlecks, Silvana
dc.contributor.authorGieseler, Dan
dc.contributor.authorMarschelke, Claudia
dc.contributor.authorUlbricht, Juliane
dc.contributor.authorvan Pée, Karl-Heinz
dc.contributor.authorLuxenhofer, Robert
dc.date.accessioned2016-02-28T05:53:41Z
dc.date.available2016-02-28T05:53:41Z
dc.date.issued2014-12-22
dc.identifier.citationFetsch C, Flecks S, Gieseler D, Marschelke C, Ulbricht J, et al. (2014) Self-Assembly of Amphiphilic Block Copolypeptoids with C 2 -C 5 Side Chains in Aqueous Solution . Macromolecular Chemistry and Physics 216: 547–560. Available: http://dx.doi.org/10.1002/macp.201400534.
dc.identifier.issn1022-1352
dc.identifier.doi10.1002/macp.201400534
dc.identifier.urihttp://hdl.handle.net/10754/599578
dc.description.abstract© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Nowadays, amphiphilic molecules play an important role in our life. In medical applications, amphiphilic block copolymers have attracted much attention as excipients in drug delivery systems. Here, the polymers are used as emulsifiers, micelles, or polymersomes with a hydrophilic corona block and a hydrophobic core or membrane. The aggregation behavior in aqueous solutions of a series of different amphiphilic block copolypeptoids comprising polysarcosine as a hydrophilic part is here reported. The formation of aggregates is investigated with 1H NMR spectroscopy and dynamic light scattering, and the determination of the critical micelle concentration (cmc) is performed using pyrene fluorescence spectroscopy. For the different block copolypeptoids cmc values ranging from 0.6 × 10-6 M to 0.1 × 10-3 M are found. The tendency to form micelles increases with increasing hydrophobicity at the nitrogen side chain in the hydrophobic moiety. Furthermore, in the case of the same hydrophobic side chain, a decreasing hydrophilic/lipophilic balance leads to the formation of larger aggregates. The aggregates formed in the buffer are able to solubilize the hydrophobic model compounds Reichardt's dye and pyrene, and exhibit versatile microenvironments. Final investigations about the cytotoxicity reveal that the block copolypeptoids are well tolerated by mammalian cells up to high concentrations.
dc.description.sponsorshipThis publication is based on work supported by Award No. KUK-F1-029-32, made by King Abdullah University of Science and Technology (KAUST). Light-scattering experiments were possible through support of the Deutsche Forschungsgemeinschaft (INST 93/774-1 FUGG). The authors are grateful to Prof. Rainer Jordan (TU Dresden) for support and access to equipment. This work was supported by the Fonds der Chemischen Industrie and the Free State of Bavaria. The authors gratefully acknowledge financial support by the German Plastics Center SKZ and the Julius-Maximilians Universitat Wurzburg for start-up funding.
dc.publisherWiley
dc.subjectCytotoxicity
dc.subjectN-carboxyanhydride
dc.subjectPolypeptoids
dc.subjectPolysarcosine
dc.subjectSolvatochromic
dc.titleSelf-Assembly of Amphiphilic Block Copolypeptoids with C 2 -C 5 Side Chains in Aqueous Solution
dc.typeArticle
dc.identifier.journalMacromolecular Chemistry and Physics
dc.contributor.institutionFunctional Polymer Materials; Chair for Chemical Technology of Materials Synthesis; University Würzburg; Röntgenring 11 97070 Würzburg Germany
dc.contributor.institutionProfessur für Allgemeine Biochemie; Department Chemie; Technische Universität Dresden; Bergstr. 66 01069 Dresden Germany
dc.contributor.institutionProfessur für Makromolekulare Chemie; Department Chemie; Technische Universität Dresden; Mommsenstr. 4 01069 Dresden Germany
kaust.grant.numberKUK-F1-029-32
dc.date.published-online2014-12-22
dc.date.published-print2015-03


This item appears in the following Collection(s)

Show simple item record