• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Corgié, Stéphane C.
    Kahawong, Patarawan
    Duan, Xiaonan
    Bowser, Daniel
    Edward, Joseph B.
    Walker, Larry P.
    Giannelis, Emmanuel P.
    KAUST Grant Number
    KUS-C1-018-02
    Date
    2012-02-15
    Online Publication Date
    2012-02-15
    Print Publication Date
    2012-05-09
    Permanent link to this record
    http://hdl.handle.net/10754/599574
    
    Metadata
    Show full item record
    Abstract
    Bio-nanocatalysts (BNCs) consisting of horseradish peroxidase (HRP) self-assembled with magnetic nanoparticles (MNPs) enhance enzymatic activity due to the faster turnover and lower inhibition of the enzyme. The size and magnetization of the MNPs affect the formation of the BNCs, and ultimately control the activity of the bound enzymes. Smaller MNPs form small clusters with a low affinity for the HRP. While the turnover for the bound fraction is drastically increased, there is no difference in the H 2O 2 inhibitory concentration. Larger MNPs with a higher magnetization aggregate in larger clusters and have a higher affinity for the enzyme and a lower substrate inhibition. All of the BNCs are more active than the free enzyme or the MNPs (BNCs > HRP ≤laquo; MNPs). Since the BNCs show surprising resilience in various reaction conditions, they may pave the way towards new hybrid biocatalysts with increased activities and unique catalytic properties for magnetosensitive enzymatic reactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Citation
    Corgié SC, Kahawong P, Duan X, Bowser D, Edward JB, et al. (2012) Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity. Advanced Functional Materials 22: 1940–1951. Available: http://dx.doi.org/10.1002/adfm.201102398.
    Sponsors
    P.K. gratefully acknowledges the support of a Thai government scholarship. This publication is based on work supported in part by Award No KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST) and the US Department of Transportation under contract to the Northeast Sun Grant Initiative at Cornell University (US DOT Assistance #DTOS59-07-G-00052). This work made use of the Cornell Center for Materials Research Facilities supported by the National Science Foundation under Award Number DMR-0520404. The authors acknowledge the Nanobiotechnology Center (NBTC) and the Biofuels Research Laboratory (BRL) at Cornell University, Ithaca, NY, USA.
    Publisher
    Wiley
    Journal
    Advanced Functional Materials
    DOI
    10.1002/adfm.201102398
    ae974a485f413a2113503eed53cd6c53
    10.1002/adfm.201102398
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.