Show simple item record

dc.contributor.authorBruner, Christopher
dc.contributor.authorDauskardt, Reinhold
dc.date.accessioned2016-02-28T05:52:54Z
dc.date.available2016-02-28T05:52:54Z
dc.date.issued2014-01-24
dc.identifier.citationBruner C, Dauskardt R (2014) Role of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells. Macromolecules 47: 1117–1121. Available: http://dx.doi.org/10.1021/ma402215j.
dc.identifier.issn0024-9297
dc.identifier.issn1520-5835
dc.identifier.doi10.1021/ma402215j
dc.identifier.urihttp://hdl.handle.net/10754/599533
dc.description.abstractFor semiconducting polymers, such as regioregular poly(3-hexylthiophene-2, 5-diyl) (rr-P3HT), the molecular weight has been correlated to charge carrier field-effect mobilities, surface morphology, and gelation rates in solution and therefore has important implications for long-Term reliability, manufacturing, and future applications of electronic organic thin films. In this work, we show that the molecular weight rr-P3HT in organic solar cells can also significantly change the internal cohesion of the photoactive layer using micromechanical testing techniques. Cohesive values ranged from ∼0.5 to ∼17 J m -2, following the general trend of greater cohesion with increasing molecular weight. Using nanodynamic mechanical analysis, we attribute the increase in cohesion to increased plasticity which helps dissipate the applied energy. Finally, we correlate photovoltaic efficiency with cohesion to assess the device physics pertinent to optimizing device reliability. This research elucidates the fundamental parameters which affect both the mechanical stability and efficiency of polymer solar cells. © 2014 American Chemical Society.
dc.description.sponsorshipThis work was supported by the Center for Advanced Molecular Photovoltaics (CAMP) under the King Abdullah University of Science and Technology (KAUST) under award KUS-C1-015-21.
dc.publisherAmerican Chemical Society (ACS)
dc.titleRole of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells
dc.typeArticle
dc.identifier.journalMacromolecules
dc.contributor.institutionStanford University, Palo Alto, United States
kaust.grant.numberKUS-C1-015-21
kaust.grant.fundedcenterCenter for Advanced Molecular Photovoltaics (CAMP)
dc.date.published-online2014-01-24
dc.date.published-print2014-02-11


This item appears in the following Collection(s)

Show simple item record