• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Riemann-Cartan geometry of nonlinear disclination mechanics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Yavari, A.
    Goriely, A.
    KAUST Grant Number
    KUK C1-013-04
    Date
    2012-03-23
    Online Publication Date
    2012-03-23
    Print Publication Date
    2013-01
    Permanent link to this record
    http://hdl.handle.net/10754/599510
    
    Metadata
    Show full item record
    Abstract
    In the continuous theory of defects in nonlinear elastic solids, it is known that a distribution of disclinations leads, in general, to a non-trivial residual stress field. To study this problem, we consider the particular case of determining the residual stress field of a cylindrically symmetric distribution of parallel wedge disclinations. We first use the tools of differential geometry to construct a Riemannian material manifold in which the body is stress-free. This manifold is metric compatible, has zero torsion, but has non-vanishing curvature. The problem then reduces to embedding this manifold in Euclidean 3-space following the procedure of a classical nonlinear elastic problem. We show that this embedding can be elegantly accomplished by using Cartan's method of moving frames and compute explicitly the residual stress field for various distributions in the case of a neo-Hookean material. © 2012 The Author(s).
    Citation
    Yavari A, Goriely A (2012) Riemann-Cartan geometry of nonlinear disclination mechanics. Mathematics and Mechanics of Solids 18: 91–102. Available: http://dx.doi.org/10.1177/1081286511436137.
    Sponsors
    This publication was based on work supported in part by Award No KUK C1-013-04, made by King Abdullah University of Science and Technology (KAUST). AG is a Wolfson Royal Society Merit Holder. AY was partially supported by NSF-Grant No. CMMI 1042559.
    Publisher
    SAGE Publications
    Journal
    Mathematics and Mechanics of Solids
    DOI
    10.1177/1081286511436137
    ae974a485f413a2113503eed53cd6c53
    10.1177/1081286511436137
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.