Show simple item record

dc.contributor.authorRoelofs, Katherine E.
dc.contributor.authorBrennan, Thomas P.
dc.contributor.authorDominguez, Juan C.
dc.contributor.authorBent, Stacey F.
dc.date.accessioned2016-02-28T05:51:36Z
dc.date.available2016-02-28T05:51:36Z
dc.date.issued2012-06
dc.identifier.citationRoelofs KE, Brennan TP, Dominguez JC, Bent SF (2012) Recombination barrier layers in solid-state quantum dot-sensitized solar cells. 2012 38th IEEE Photovoltaic Specialists Conference. Available: http://dx.doi.org/10.1109/PVSC.2012.6318223.
dc.identifier.doi10.1109/PVSC.2012.6318223
dc.identifier.urihttp://hdl.handle.net/10754/599463
dc.description.abstractBy replacing the dye in the dye-sensitized solar cell design with semiconductor quantum dots as the light-absorbing material, solid-state quantum dot-sensitized solar cells (ss-QDSSCs) were fabricated. Cadmium sulfide quantum dots (QDs) were grown in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer increased open circuit voltage, causing an increase in device efficiency. For thicker Al2O3 barrier layers, photocurrent decreased substantially, leading to a decrease in device efficiency. © 2012 IEEE.
dc.description.sponsorshipWe would like to thank the McGehee group at Stanford forthe use of materials and equipment. This work was supportedby the Center for Advanced Molecular Photovoltaics, made bythe King Abdullah University of Science and Technology(KAUST).
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectcharge carrier lifetime
dc.subjectphotovoltaic cells
dc.subjectquantum dots
dc.subjectsurface engineering
dc.titleRecombination barrier layers in solid-state quantum dot-sensitized solar cells
dc.typeConference Paper
dc.identifier.journal2012 38th IEEE Photovoltaic Specialists Conference
dc.contributor.institutionStanford University, Palo Alto, United States
kaust.grant.fundedcenterCenter for Advanced Molecular Photovoltaics (CAMP)


This item appears in the following Collection(s)

Show simple item record