Recombination barrier layers in solid-state quantum dot-sensitized solar cells
Type
Conference PaperDate
2012-06Permanent link to this record
http://hdl.handle.net/10754/599463
Metadata
Show full item recordAbstract
By replacing the dye in the dye-sensitized solar cell design with semiconductor quantum dots as the light-absorbing material, solid-state quantum dot-sensitized solar cells (ss-QDSSCs) were fabricated. Cadmium sulfide quantum dots (QDs) were grown in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer increased open circuit voltage, causing an increase in device efficiency. For thicker Al2O3 barrier layers, photocurrent decreased substantially, leading to a decrease in device efficiency. © 2012 IEEE.Citation
Roelofs KE, Brennan TP, Dominguez JC, Bent SF (2012) Recombination barrier layers in solid-state quantum dot-sensitized solar cells. 2012 38th IEEE Photovoltaic Specialists Conference. Available: http://dx.doi.org/10.1109/PVSC.2012.6318223.Sponsors
We would like to thank the McGehee group at Stanford forthe use of materials and equipment. This work was supportedby the Center for Advanced Molecular Photovoltaics, made bythe King Abdullah University of Science and Technology(KAUST).ae974a485f413a2113503eed53cd6c53
10.1109/PVSC.2012.6318223