• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Quantitative Modeling of Acid Wormholing in Carbonates- What Are the Gaps to Bridge

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Qiu, Xiangdong
    Zhao, Weishu
    Chang, Frank
    Dyer, Steve
    Date
    2013-03-10
    Online Publication Date
    2013-03-10
    Print Publication Date
    2013
    Permanent link to this record
    http://hdl.handle.net/10754/599427
    
    Metadata
    Show full item record
    Abstract
    Carbonate matrix acidization extends a well's effective drainage radius by dissolving rock and forming conductive channels (wormholes) from the wellbore. Wormholing is a dynamic process that involves balance between the acid injection rate and reaction rate. Generally, injection rate is well defined where injection profiles can be controlled, whereas the reaction rate can be difficult to obtain due to its complex dependency on interstitial velocity, fluid composition, rock surface properties etc. Conventional wormhole propagation models largely ignore the impact of reaction products. When implemented in a job design, the significant errors can result in treatment fluid schedule, rate, and volume. A more accurate method to simulate carbonate matrix acid treatments would accomodate the effect of reaction products on reaction kinetics. It is the purpose of this work to properly account for these effects. This is an important step in achieving quantitative predictability of wormhole penetration during an acidzing treatment. This paper describes the laboratory procedures taken to obtain the reaction-product impacted kinetics at downhole conditions using a rotating disk apparatus, and how this new set of kinetics data was implemented in a 3D wormholing model to predict wormhole morphology and penetration velocity. The model explains some of the differences in wormhole morphology observed in limestone core flow experiments where injection pressure impacts the mass transfer of hydrogen ions to the rock surface. The model uses a CT scan rendered porosity field to capture the finer details of the rock fabric and then simulates the fluid flow through the rock coupled with reactions. Such a validated model can serve as a base to scale up to near wellbore reservoir and 3D radial flow geometry allowing a more quantitative acid treatment design.
    Citation
    Qiu X, Zhao W, Chang F, Dyer S (2013) Quantitative Modeling of Acid Wormholing in Carbonates- What Are the Gaps to Bridge. SPE Middle East Oil and Gas Show and Conference. Available: http://dx.doi.org/10.2118/164245-ms.
    Sponsors
    The authors would like to thank Jamaliah Abu’Rabie – PhD student of King Abdullah University of Science and Technology (KAUST) for much of the reaction kinetics experimentation used in this study as part of a summer internship program, and Mohammed Abdul Muqtadir of Schlumberger’s Dhahran Research Center for all aspects of the experimentation, core flow and reaction kinetics. Additional aknowledgements go to Sarmad Khan and his supervisor, Dr Abdullah Sultan of King Fahd University of Petroleum and Minerals (KFUPM) for assisting in the experimentation and core CT scanning.
    Publisher
    Society of Petroleum Engineers (SPE)
    Journal
    SPE Middle East Oil and Gas Show and Conference
    DOI
    10.2118/164245-ms
    ae974a485f413a2113503eed53cd6c53
    10.2118/164245-ms
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.