Show simple item record

dc.contributor.authorBojanov, Borislav
dc.contributor.authorPetrova, Guergana
dc.date.accessioned2016-02-28T05:50:48Z
dc.date.available2016-02-28T05:50:48Z
dc.date.issued2009-09
dc.identifier.citationBojanov B, Petrova G (2009) Quadrature formulas for Fourier coefficients. Journal of Computational and Applied Mathematics 231: 378–391. Available: http://dx.doi.org/10.1016/j.cam.2009.02.097.
dc.identifier.issn0377-0427
dc.identifier.doi10.1016/j.cam.2009.02.097
dc.identifier.urihttp://hdl.handle.net/10754/599420
dc.description.abstractWe consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives. © 2009 Elsevier B.V. All rights reserved.
dc.description.sponsorshipThe first author was supported by the Sofia University Research grant # 135/2008 and by Swiss-NSF Scopes Project IB7320-111079. The work of second author has been supported in part by the NSF Grants #DMS-0505501 and #DMS-0810869, and by Award # KUS-C1-016-04, given by King Abdullah University of Science and Technology (KAUST).
dc.publisherElsevier BV
dc.subjectFourier-Tchebycheff coefficients
dc.subjectGaussian quadratures
dc.subjectNumerical integration
dc.subjectOrthogonal polynomials
dc.titleQuadrature formulas for Fourier coefficients
dc.typeArticle
dc.identifier.journalJournal of Computational and Applied Mathematics
dc.contributor.institutionSofia University St. Kliment Ohridski, Sofia, Bulgaria
dc.contributor.institutionTexas A and M University, College Station, United States
kaust.grant.numberKUS-C1-016-04


This item appears in the following Collection(s)

Show simple item record