Show simple item record

dc.contributor.authorChaudhuri, Siddhartha
dc.contributor.authorKalogerakis, Evangelos
dc.contributor.authorGuibas, Leonidas
dc.contributor.authorKoltun, Vladlen
dc.date.accessioned2016-02-28T05:50:32Z
dc.date.available2016-02-28T05:50:32Z
dc.date.issued2011
dc.identifier.citationChaudhuri S, Kalogerakis E, Guibas L, Koltun V (2011) Probabilistic reasoning for assembly-based 3D modeling. ACM SIGGRAPH 2011 papers on - SIGGRAPH ’11. Available: http://dx.doi.org/10.1145/1964921.1964930.
dc.identifier.doi10.1145/1964921.1964930
dc.identifier.doi10.1145/2010324.1964930
dc.identifier.urihttp://hdl.handle.net/10754/599406
dc.description.abstractAssembly-based modeling is a promising approach to broadening the accessibility of 3D modeling. In assembly-based modeling, new models are assembled from shape components extracted from a database. A key challenge in assembly-based modeling is the identification of relevant components to be presented to the user. In this paper, we introduce a probabilistic reasoning approach to this problem. Given a repository of shapes, our approach learns a probabilistic graphical model that encodes semantic and geometric relationships among shape components. The probabilistic model is used to present components that are semantically and stylistically compatible with the 3D model that is being assembled. Our experiments indicate that the probabilistic model increases the relevance of presented components. © 2011 ACM.
dc.description.sponsorshipWe are grateful to Aaron Hertzmann, Sergey Levine, Jonathan Laserson, Suchi Saria, and Philipp Krahenbuhl for their comments on this paper, and to Daphne Koller for helpful discussions. Chris Platz and Hadidjah Chamberlin assisted in the preparation of figures and the supplementary video. Niels Joubert narrated the video. This work was supported in part by NSF grants SES-0835601, CCF-0641402, and FODAVA-0808515, and by KAUST Global Collaborative Research.
dc.publisherAssociation for Computing Machinery (ACM)
dc.subjectData-driven 3D modeling
dc.subjectProbabilistic graphical models
dc.subjectProbabilistic reasoning
dc.titleProbabilistic reasoning for assembly-based 3D modeling
dc.typeConference Paper
dc.identifier.journalACM SIGGRAPH 2011 papers on - SIGGRAPH '11
dc.contributor.institutionStanford University, Palo Alto, United States


This item appears in the following Collection(s)

Show simple item record