• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Powering Up With Space-Time Wind Forecasting

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Hering, Amanda S.
    Genton, Marc G. cc
    KAUST Grant Number
    KUS-C1-016-04
    Date
    2010-03
    Permanent link to this record
    http://hdl.handle.net/10754/599353
    
    Metadata
    Show full item record
    Abstract
    The technology to harvest electricity from wind energy is now advanced enough to make entire cities powered by it a reality. High-quality, short-term forecasts of wind speed are vital to making this a more reliable energy source. Gneiting et al. (2006) have introduced a model for the average wind speed two hours ahead based on both spatial and temporal information. The forecasts produced by this model are accurate, and subject to accuracy, the predictive distribution is sharp, that is, highly concentrated around its center. However, this model is split into nonunique regimes based on the wind direction at an offsite location. This paper both generalizes and improves upon this model by treating wind direction as a circular variable and including it in the model. It is robust in many experiments, such as predicting wind at other locations. We compare this with the more common approach of modeling wind speeds and directions in the Cartesian space and use a skew-t distribution for the errors. The quality of the predictions from all of these models can be more realistically assessed with a loss measure that depends upon the power curve relating wind speed to power output. This proposed loss measure yields more insight into the true value of each models predictions. © 2010 American Statistical Association.
    Citation
    Hering AS, Genton MG (2010) Powering Up With Space-Time Wind Forecasting. Journal of the American Statistical Association 105: 92–104. Available: http://dx.doi.org/10.1198/jasa.2009.ap08117.
    Sponsors
    Amanda S Hering is Assistant Professor, Department of Mathematical and Computer Sciences, Colorado School of Mines. Golden. CO 80401-1887 (E-mail ahering@nunes edit) Marc G Genton is Professor. Department of Statistics. Texas A&M University. College Station, TX 77843-3143 (E-mail genton@stat tamu edu) This research was partially supported by NSF grants DMS-0504896. CMG ATM-0620624. and Award No KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST) The author, would like to thank the Editor and two referees for their helpful comments and suggestions. as well as Tilmann Gneiting for providing the data and computer code for the RSTD model Stel Walker of Oregon State University's Energy Resources Research Laboratory and Bonneville Power Administration provided the 10-minute data We also thank Michael Stein for helpful comments made on an earlier version of this work
    Publisher
    Informa UK Limited
    Journal
    Journal of the American Statistical Association
    DOI
    10.1198/jasa.2009.ap08117
    ae974a485f413a2113503eed53cd6c53
    10.1198/jasa.2009.ap08117
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.