• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Ding, I-Kang
    Tétreault, Nicolas
    Brillet, Jérémie
    Hardin, Brian E.
    Smith, Eva H.
    Rosenthal, Samuel J.
    Sauvage, Frédéric
    Grätzel, Michael
    McGehee, Michael D.
    KAUST Grant Number
    KUS-C1-015-21
    Date
    2009-08-10
    Permanent link to this record
    http://hdl.handle.net/10754/599339
    
    Metadata
    Show full item record
    Abstract
    In this paper, the pore filling of spiro-OMeTAD (2,2′,7,7′- tetrakis-(N,N-di-p-methoxyphenylamine)9,9′-spirobtfIuorene) in mesoporous TiO2 films is quantified for the first time using XPS depth profiling and UV-Vis absorption spectroscopy. It is shown that spiro-OMeTAD can penetrate the entire depth of the film, and its concentration is constant throughout the film. We determine that in a 2.5-μm-thick film, the volume of the pores is 60-65% filled. The pores become less filled when thicker films are used. Such filling fraction is much higher than the solution concentration because the excess solution on top of the film can act as a reservoir during the spin coating process. Lastly, we demonstrate that by using a lower spin coating speed and higher spiro-OMeTAD solution concentration, we can increase the filling fraction and consequently the efficiency of the device. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA.
    Citation
    Ding I-K, Tétreault N, Brillet J, Hardin BE, Smith EH, et al. (2009) Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance. Advanced Functional Materials 19: 2431–2436. Available: http://dx.doi.org/10.1002/adfm.200900541.
    Sponsors
    This publication was partially based on work supported the Center forAdvanced Molecular Photovoltaics (Award No KUS-C1-015-21), made byKing Abdullah University of Science and Technology (KAUST). It was alsopartially supported by the Office of Naval Research. I-K. Ding is supportedby a Chevron Stanford Graduate Fellowship. We thank Chuck Hitzman andDr. Michael Kelly for valuable discussions and experimental assistance withX-ray photoelectron spectroscopy and Dr. Brian O’Regan for giving us theidea of dissolving out spiro-OMeTAD from the pores. Jeremie Brilletreceived financial support from a Marie Curie Research Training Network,Hydrogen Project (MRTN-CT-2006-032474). Supporting Information isavailable online from Wiley InterScience or the author.
    Publisher
    Wiley
    Journal
    Advanced Functional Materials
    DOI
    10.1002/adfm.200900541
    ae974a485f413a2113503eed53cd6c53
    10.1002/adfm.200900541
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.