Plasticization-resistant hollow fiber membranes for CO2/CH4 separation based on a thermally crosslinkable polyimide
Type
ArticleKAUST Grant Number
KUS-I1-011-21Date
2011-10Permanent link to this record
http://hdl.handle.net/10754/599203
Metadata
Show full item recordAbstract
Decarboxylation-induced thermal crosslinking has been demonstrated to be effective for stabilizing membranes against plasticization in dense films. This study extends this promising crosslinking approach from dense films to industrially relevant asymmetric hollow fiber membranes. Crosslinkable asymmetric hollow fiber membranes were spun from a carboxylic acid containing polyimide, 6FDA-DAM:DABA. Dope and spinning conditions were optimized to obtain fibers with a defect-free selective skin layer. It is found that slightly defective fibers suffered severe selectivity loss after thermal crosslinking, suggesting that defect-free property is essential to the performance of the resulting crosslinked hollow fiber membranes. The crosslinked fibers were tested for CO 2/CH 4 separation. The excellent plasticization resistance under high pressure feeds (with highest CO 2 partial pressure of 400psia) suggests that these robust membranes are promising for aggressive natural gas purification. © 2011 Elsevier B.V.Citation
Chen C-C, Qiu W, Miller SJ, Koros WJ (2011) Plasticization-resistant hollow fiber membranes for CO2/CH4 separation based on a thermally crosslinkable polyimide. Journal of Membrane Science 382: 212–221. Available: http://dx.doi.org/10.1016/j.memsci.2011.08.015.Sponsors
The authors acknowledge the financial support from Chevron Energy Technology Company, United States Department of Energy (Grant DE-FG03-95ER14538) and Award no. KUS-I1-011-21 made by King Abdullah University of Science and Technology (KAUST).Publisher
Elsevier BVJournal
Journal of Membrane Scienceae974a485f413a2113503eed53cd6c53
10.1016/j.memsci.2011.08.015