• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Physically-Based Interactive Flow Visualization Based on Schlieren and Interferometry Experimental Techniques

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Brownlee, C.
    Pegoraro, V.
    Shankar, S.
    McCormick, Patrick S.
    Hansen, C. D.
    KAUST Grant Number
    KUS-C1-016-04
    Date
    2011-11
    Permanent link to this record
    http://hdl.handle.net/10754/599191
    
    Metadata
    Show full item record
    Abstract
    Understanding fluid flow is a difficult problem and of increasing importance as computational fluid dynamics (CFD) produces an abundance of simulation data. Experimental flow analysis has employed techniques such as shadowgraph, interferometry, and schlieren imaging for centuries, which allow empirical observation of inhomogeneous flows. Shadowgraphs provide an intuitive way of looking at small changes in flow dynamics through caustic effects while schlieren cutoffs introduce an intensity gradation for observing large scale directional changes in the flow. Interferometry tracks changes in phase-shift resulting in bands appearing. The combination of these shading effects provides an informative global analysis of overall fluid flow. Computational solutions for these methods have proven too complex until recently due to the fundamental physical interaction of light refracting through the flow field. In this paper, we introduce a novel method to simulate the refraction of light to generate synthetic shadowgraph, schlieren and interferometry images of time-varying scalar fields derived from computational fluid dynamics data. Our method computes physically accurate schlieren and shadowgraph images at interactive rates by utilizing a combination of GPGPU programming, acceleration methods, and data-dependent probabilistic schlieren cutoffs. Applications of our method to multifield data and custom application-dependent color filter creation are explored. Results comparing this method to previous schlieren approximations are finally presented. © 2011 IEEE.
    Citation
    Brownlee C, Pegoraro V, Shankar S, McCormick PS, Hansen CD (2011) Physically-Based Interactive Flow Visualization Based on Schlieren and Interferometry Experimental Techniques. IEEE Transactions on Visualization and Computer Graphics 17: 1574–1586. Available: http://dx.doi.org/10.1109/TVCG.2010.255.
    Sponsors
    The authors would like to thank Kelly Gaither for providing the x38 data and David Ebert for allowing them to reuse images from [25]. The authors would like to thank Gary Settles for images of shadowgraph and schlieren photographs. The authors would also like to thank Jeremy Thornock and Diem Nguyen from the Center for the Simulation of Accidental Fires and Explosions (C-SAFE) for providing the helium data. The authors would also like to thank Jamal Mohd-Yusof for his help and ideas for their paper. Additional thanks go to Tim McIntyre for the use of his interferometry example image and Mathias Schott for his assistance generating a volume rendering of the helium data set. This publication is based on work supported by: DOE: VACET, C-SAFE Alliance Center; KUS-C1-016-04 awarded by King Abdullah University of Science and Technology (KAUST); the US National Science Foundation (NSF): CNS-0615194, CNS-0551724, CCF-0541113, IIS-0513212; and the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under contract DE-AC52-06NA25396.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    IEEE Transactions on Visualization and Computer Graphics
    DOI
    10.1109/TVCG.2010.255
    PubMed ID
    21149891
    ae974a485f413a2113503eed53cd6c53
    10.1109/TVCG.2010.255
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

    Related articles

    • Holographic color schlieren.
    • Authors: O'Hare JE, Trolinger JD
    • Issue date: 1969 Oct 1
    • Measurement of temperature and velocity fields in a convective fluid flow in air using schlieren images.
    • Authors: Martínez-González A, Moreno-Hernández D, Guerrero-Viramontes JA
    • Issue date: 2013 Aug 1
    • Quantitative Fourier analysis of schlieren masks: the transition from shadowgraph to schlieren.
    • Authors: Croccolo F, Brogioli D
    • Issue date: 2011 Jul 10
    • Phase-shifting schlieren: high-resolution quantitative schlieren that uses the phase-shifting technique principle.
    • Authors: Joannes L, Dubois F, Legros JC
    • Issue date: 2003 Sep 1
    • Wide-range average temperature measurements of convective fluid flows by using a schlieren system.
    • Authors: Martínez-González A, Moreno-Hernández D, León-Rodríguez M, Carrillo-Delgado C
    • Issue date: 2016 Jan 20
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.