Photojunction Field-Effect Transistor Based on a Colloidal Quantum Dot Absorber Channel Layer
Type
ArticleAuthors
Adinolfi, ValerioKramer, Illan J.

Labelle, André J.
Sutherland, Brandon R.
Hoogland, S.
Sargent, Edward H.

KAUST Grant Number
KUS-11-009-21Date
2015-01-13Online Publication Date
2015-01-13Print Publication Date
2015-01-27Permanent link to this record
http://hdl.handle.net/10754/599186
Metadata
Show full item recordAbstract
© 2015 American Chemical Society. The performance of photodetectors is judged via high responsivity, fast speed of response, and low background current. Many previously reported photodetectors based on size-tuned colloidal quantum dots (CQDs) have relied either on photodiodes, which, since they are primary photocarrier devices, lack gain; or photoconductors, which provide gain but at the expense of slow response (due to delayed charge carrier escape from sensitizing centers) and an inherent dark current vs responsivity trade-off. Here we report a photojunction field-effect transistor (photoJFET), which provides gain while breaking prior photoconductors' response/speed/dark current trade-off. This is achieved by ensuring that, in the dark, the channel is fully depleted due to a rectifying junction between a deep-work-function transparent conductive top contact (MoO3) and a moderately n-type CQD film (iodine treated PbS CQDs). We characterize the rectifying behavior of the junction and the linearity of the channel characteristics under illumination, and we observe a 10 μs rise time, a record for a gain-providing, low-dark-current CQD photodetector. We prove, using an analytical model validated using experimental measurements, that for a given response time the device provides a two-orders-of-magnitude improvement in photocurrent-to-dark-current ratio compared to photoconductors. The photoJFET, which relies on a junction gate-effect, enriches the growing family of CQD photosensitive transistors.Citation
Adinolfi V, Kramer IJ, Labelle AJ, Sutherland BR, Hoogland S, et al. (2015) Photojunction Field-Effect Transistor Based on a Colloidal Quantum Dot Absorber Channel Layer. ACS Nano 9: 356–362. Available: http://dx.doi.org/10.1021/nn5053537.Sponsors
The authors would like to acknowledge E. Palmiano, R. Wolowiec, and D. Kopilovic for technical assistance and guidance. Thanks to C. Maragliano for the valuable discussions. This publication is based in part on work supported by Award KUS-11-009-21 made by King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund–Research Excellence Program, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada.Publisher
American Chemical Society (ACS)Journal
ACS NanoPubMed ID
25558809ae974a485f413a2113503eed53cd6c53
10.1021/nn5053537
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Carbon Nanotube Transistor with Colloidal Quantum Dot Photosensitive Gate for Ultrahigh External Quantum Efficiency Photodetector.
- Authors: Han J, Huang K, Su X, Xiao X, Gong X, Wang H, Cao J
- Issue date: 2023 May 23
- Depleted-heterojunction colloidal quantum dot solar cells.
- Authors: Pattantyus-Abraham AG, Kramer IJ, Barkhouse AR, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin MK, Grätzel M, Sargent EH
- Issue date: 2010 Jun 22
- Field-effect transistor-based solution-processed colloidal quantum dot photodetector with broad bandwidth into near-infrared region.
- Authors: Yang S, Zhao N, Zhang L, Zhong H, Liu R, Zou B
- Issue date: 2012 Jun 29
- A Colloidal-Quantum-Dot Infrared Photodiode with High Photoconductive Gain.
- Authors: Tang Y, Wu F, Chen F, Zhou Y, Wang P, Long M, Zhou W, Ning Z, He J, Gong F, Zhu Z, Qin S, Hu W
- Issue date: 2018 Nov
- Facet-Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors.
- Authors: Biondi M, Choi MJ, Wang Z, Wei M, Lee S, Choubisa H, Sagar LK, Sun B, Baek SW, Chen B, Todorović P, Najarian AM, Sedighian Rasouli A, Nam DH, Vafaie M, Li YC, Bertens K, Hoogland S, Voznyy O, García de Arquer FP, Sargent EH
- Issue date: 2021 Aug