• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Phosphonate self-assembled monolayers as organic linkers in solid-state quantum dot sensetized solar cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Ardalan, Pendar
    Brennan, Thomas P.
    Bakke, Jonathan R.
    Bent, Stacey F.
    KAUST Grant Number
    KUS-C1-015-21
    Date
    2010-06
    Permanent link to this record
    http://hdl.handle.net/10754/599181
    
    Metadata
    Show full item record
    Abstract
    We have employed X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) spectroscopy, infrared (IR) spectroscopy, water contact angle (WCA) measurements, ellipsometry, and electrical measurements to study the effects of self-assembled monolayers (SAMs) with phosphonic acid headgroups on the bonding and performance of cadmium sulfide (CdS) solid-state quantum dot sensitized solar cells (QDSSCs). ∼2 to ∼6 nm size CdS quantum dots (QDs) were grown on the SAM-passivated TiO2 surfaces by successive ionic layer adsorption and reaction (SILAR). Our results show differences in the bonding of the CdS QDs at the TiO2 surfaces with a SAM linker. Moreover, our data indicate that presence of a SAM increases the CdS uptake on TiO2 as well as the performance of the resulting devices. Importantly, we observe ∼2 times higher power conversion efficiencies in the devices with a SAM compared to those that lack a SAM. © 2010 IEEE.
    Citation
    Ardalan P, Brennan TP, Bakke JR, Bent SF (2010) Phosphonate self-assembled monolayers as organic linkers in solid-state quantum dot sensetized solar cells. 2010 35th IEEE Photovoltaic Specialists Conference. Available: http://dx.doi.org/10.1109/PVSC.2010.5614620.
    Sponsors
    The authors would like to acknowledge I-KangDing for help with the device fabrication and the solarsimulator measurements. We also thank the StanfordNanocharacterization Laboratory (SNL) staff and the staffof the Center for Polymer Interfaces and MacromolecularAssemblies (CPIMA) for their support. This publicationwas based on work supported by the Center for AdvancedMolecular Photovoltaics (Award No. KUS-C1-015-21),made by King Abdullah University of Science andTechnology (KAUST).
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    2010 35th IEEE Photovoltaic Specialists Conference
    DOI
    10.1109/PVSC.2010.5614620
    ae974a485f413a2113503eed53cd6c53
    10.1109/PVSC.2010.5614620
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.