• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Hays, Sarah
    Zhang, Fang cc
    Logan, Bruce E.
    KAUST Grant Number
    KUS-I1-003-13
    Date
    2011-10
    Permanent link to this record
    http://hdl.handle.net/10754/599166
    
    Metadata
    Show full item record
    Abstract
    Graphite fiber brush electrodes provide high surface areas for exoelectrogenic bacteria in microbial fuel cells (MFCs), but the cylindrical brush format limits more compact reactor designs. To enable MFC designs with closer electrode spacing, brush anodes were pressed up against a separator (placed between the electrodes) to reduce the volume occupied by the brush. Higher maximum voltages were produced using domestic wastewater (COD = 390 ± 89 mg L-1) with brush anodes (360 ± 63 mV, 1000 Ω) than woven carbon mesh anodes (200 ± 81 mV) with one or two separators. Maximum power densities were similar for brush anode reactors with one or two separators after 30 days (220 ± 1.2 and 240 ± 22 mW m-2), but with one separator the brush anode MFC power decreased to 130 ± 55 mW m-2 after 114 days. Power densities in MFCs with mesh anodes were very low (<45 mW m-2). Brush anodes MFCs had higher COD removals (80 ± 3%) than carbon mesh MFCs (58 ± 7%), but similar Coulombic efficiencies (8.6 ± 2.9% brush; 7.8 ± 7.1% mesh). These results show that compact (hemispherical) brush anodes can produce higher power and more effective domestic wastewater treatment than flat mesh anodes in MFCs. © 2011 Elsevier B.V. All rights reserved.
    Citation
    Hays S, Zhang F, Logan BE (2011) Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. Journal of Power Sources 196: 8293–8300. Available: http://dx.doi.org/10.1016/j.jpowsour.2011.06.027.
    Sponsors
    We thank Deepak Pant and VITO, the Flemish Institute for Technological Research, for donating the AC cathodes used in this study. This research was supported by the King Abdullah University of Science and Technology (KAUST) (Award KUS-I1-003-13).
    Publisher
    Elsevier BV
    Journal
    Journal of Power Sources
    DOI
    10.1016/j.jpowsour.2011.06.027
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.jpowsour.2011.06.027
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.