• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Performance Modeling of Hybrid MPI/OpenMP Scientific Applications on Large-scale Multicore Cluster Systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Wu, Xingfu
    Taylor, Valerie
    KAUST Grant Number
    KUS-I1-010-01
    Date
    2011-08
    Permanent link to this record
    http://hdl.handle.net/10754/599161
    
    Metadata
    Show full item record
    Abstract
    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore clusters: IBM POWER4, POWER5+ and Blue Gene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore clusters because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyro kinetic Toroidal Code in magnetic fusion to validate our performance model of the hybrid application on these multicore clusters. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore clusters. © 2011 IEEE.
    Citation
    Wu X, Taylor V (2011) Performance Modeling of Hybrid MPI/OpenMP Scientific Applications on Large-scale Multicore Cluster Systems. 2011 14th IEEE International Conference on Computational Science and Engineering. Available: http://dx.doi.org/10.1109/CSE.2011.42.
    Sponsors
    This work is supported by NSF grant CNS-0911023 and theAward No. KUS-I1-010-01 made by King AbdullahUniversity of Science and Technology (KAUST). Theauthors would like to acknowledge Argonne LeadershipComputing Facility for the use of BlueGene/P under DOEINCITE project “Performance Evaluation and AnalysisConsortium End Station”, the SDSC for the use of DataStarP655 under TeraGrid project TG-ASC040031, and TAMUSupercomputing Facilities for the use of Hydra. We wouldalso like to thank Stephane Ethier from Princeton PlasmaPhysics Laboratory and Shirley Moore from University ofTennessee for providing the GTC code.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    2011 14th IEEE International Conference on Computational Science and Engineering
    DOI
    10.1109/CSE.2011.42
    ae974a485f413a2113503eed53cd6c53
    10.1109/CSE.2011.42
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.